
The Swish Concurrency Engine
Version 2.8.1

Bob Burger, editor

© 2018-2024 Beckman Coulter, Inc. Licensed under the MIT License.

https://opensource.org/licenses/MIT

Contents

1 Introduction to Swish 7

1.1 Overview . 7

1.2 Supervision Tree . 8

2 Developing Software with Swish 9

2.1 Introduction . 9

2.2 Deployment Types . 9

2.2.1 Scripts . 9

2.2.2 Linked Programs . 11

2.2.3 Stand-alone Programs . 11

2.2.4 Services . 12

2.3 Running Tests . 12

2.4 Programming Interface . 12

2.4.1 Configuration . 12

2.4.2 Program Life Cycle . 15

2.4.3 Foreign Interface . 16

2.4.4 Testing . 18

3 Operating System Interface 22

3.1 Introduction . 22

3.2 Theory of Operation . 22

3.3 Programming Interface . 23

3.3.1 C Interface . 23

3.3.2 System Functions and Procedures . 26

3.3.3 Port Functions . 28

2

3.3.4 Process Functions . 29

3.3.5 File System Functions . 30

3.3.6 TCP/IP Functions . 33

3.3.7 SQLite Functions . 35

3.3.8 Message-Digest Functions . 38

4 Erlang Embedding 39

4.1 Introduction . 39

4.2 Data Structures . 39

4.3 Theory of Operation . 41

4.4 Programming Interface . 43

4.4.1 Process Creation . 43

4.4.2 Process Registration . 43

4.4.3 Process Termination, Links, and Monitors . 44

4.4.4 Messages and Pattern Matching . 47

4.4.5 Process Properties . 50

4.4.6 Miscellaneous . 51

4.4.7 Tuples . 57

4.4.8 I/O . 59

4.4.9 Queues . 71

4.4.10 Hash Tables . 71

4.4.11 Error Strings . 72

4.4.12 String Utilities . 73

4.4.13 Message Digests . 75

4.4.14 Data-Encoding Utilities . 77

4.4.15 Macro Utilities . 78

5 Regular Expressions 80

5.1 Introduction . 80

5.2 Programming Interface . 81

5.3 The Regexp Pattern Language . 82

5.3.1 Basic Assertions . 82

5.3.2 Characters and Character Classes . 83

3

5.3.3 Quantifiers . 84

5.3.4 Clusters . 85

5.3.5 Alternation . 88

5.3.6 Backtracking . 89

5.3.7 Looking Ahead and Behind . 89

6 Generic Server 91

6.1 Introduction . 91

6.2 Theory of Operation . 91

6.3 Programming Interface . 92

6.4 Published Events . 94

6.5 Callback Interface . 95

7 Event Manager 98

7.1 Introduction . 98

7.2 Theory of Operation . 98

7.3 Programming Interface . 100

8 Gatekeeper 103

8.1 Introduction . 103

8.2 Theory of Operation . 103

8.3 Programming Interface . 105

9 Supervisor 106

9.1 Introduction . 106

9.2 Theory of Operation . 106

9.3 Design Decisions . 109

9.4 Programming Interface . 109

9.5 Published Events . 111

9.6 Watcher Interface . 112

10 Application 114

10.1 Introduction . 114

10.2 Theory of Operation . 114

4

10.3 Programming Interface . 115

11 Database Interface 116

11.1 Introduction . 116

11.2 Theory of Operation . 116

11.3 Design Decisions . 119

11.4 Programming Interface . 119

12 Log Database 128

12.1 Introduction . 128

12.2 Theory of Operation . 128

12.2.1 Initialization . 128

12.2.2 Extensions . 129

12.3 Programming Interface . 129

12.4 Published Events . 133

13 System Statistics 134

13.1 Introduction . 134

13.2 Theory of Operation . 134

13.3 Programming Interface . 134

13.4 Published Events . 135

14 HTTP Interface 136

14.1 Introduction . 136

14.2 Theory of Operation . 136

14.2.1 URL handler and Media Type handler . 137

14.2.2 Default file handling . 138

14.2.3 Dynamic Pages . 138

14.2.4 WebSocket Protocol . 138

14.3 Security . 139

14.4 Programming Interface . 139

14.4.1 Dynamic Page Constructs . 145

14.4.2 WebSocket Protocol . 146

14.4.3 HyperText Markup Language . 146

5

14.4.4 JavaScript Object Notation . 148

14.5 Published Events . 152

15 Command Line Interface 153

15.1 Introduction . 153

15.2 Theory of Operation . 153

15.3 Programming Interface . 155

16 Parallel 159

16.1 Introduction . 159

16.2 Theory of Operation . 159

16.3 Programming Interface . 160

Bibliography 162

List of Figures 164

Index 165

6

Chapter 1

Introduction to Swish

1.1 Overview

The Swish Concurrency Engine is a framework used to write fault-tolerant programs with message-
passing concurrency. It uses the Chez Scheme [6] programming language and embeds concepts
from the Erlang [8] programming language. Swish also provides a web server following the HTTP
protocol [14].

Swish uses message-passing concurrency and fault isolation to provide fault-tolerant software [1, 18].
The software is divided into lightweight processes that communicate via asynchronous message
passing but are otherwise isolated from each other. Because processes share no mutable state,
one process cannot corrupt the state of another process—a problem that plagues software using
shared-state concurrency.

Exceptions are raised when the software detects an error and cannot continue normal processing.
If an exception is not caught by the process that raised it, the process is terminated. An error
logger records process crashes and other software errors.

There are two mechanisms for detecting process termination, links and monitors. Processes can be
linked together so that when one exits abnormally, the others are killed. A process can monitor
other processes and receive process-down messages that include the termination reason.

A single event dispatcher receives events from the various processes and sends them to all attached
event handlers. Event handlers filter events based on their needs.

Swish is written in Chez Scheme for two main reasons. First, it provides efficient first-class continu-
ations [4, 20] needed to implement lightweight processes with much less memory and CPU overhead
than operating system threads. Second, Chez Scheme provides powerful syntactic abstraction ca-
pabilities [7] needed to make the code closely reflect the various aspects of the design. For example,
the message-passing system uses syntactic abstraction to specify pattern matching succinctly.

I/O operations are performed asynchronously using C code (see Chapter 3), and they complete
via Scheme callback functions. Asynchronous I/O is used so that Swish can run in a single thread
without blocking for I/O. The results from asynchronous operations are invoked synchronously by
the Scheme code, allowing it to control re-entrancy.

7

application main-sup

event-mgr

log-db

event-mgr-sentry

statistics

gatekeeper

Figure 1.1: Supervision Tree

1.2 Supervision Tree

Calling app:start spawns a set of processes organized in a supervision tree. By default, Swish
uses the supervision tree illustrated in Figure 1.1. The application (see Chapter 10) is a single gen-
server that manages the lifetime of the program. It links the top-level supervisor and shuts down
the program when requested or when the linked process dies. The top-level supervisor, main-sup,
is configured one-for-all and no restarts so that a failure of any of its children crashes the program.
The event-mgr worker is the event manager gen-server (see Chapter 7). The log-db worker is a
database gen-server (see Chapter 12) that logs all events to the log database. The event-mgr-sentry
worker is used during shutdown to make sure the event manager stops sending events to log-db
before log-db shuts down. The statistics worker is a system statistics gen-server (see Chapter 13)
that periodically posts a <statistics> event. The gatekeeper worker is the gen-server described
in Chapter 8.

A web server can be added to the supervision tree by calling http:add-file-server or http:add-
server (see Chapter 14) before calling app:start.

8

Chapter 2

Developing Software with Swish

2.1 Introduction

Swish can be used to build, test, and deploy programs ranging from small scripts to large stand-
alone applications. This chapter describes some of the tools and mechanisms that Swish provides
for these purposes.

2.2 Deployment Types

For interactive development, Swish provides a REPL that reads, evaluates, and prints the values
of programs entered at the prompt. At the REPL, the load procedure can be used to evaluate
the contents of a file containing source or object code. This is convenient when developing larger
programs.

Swish provides several options for deploying programs. This section describes these options and
their trade-offs.

2.2.1 Scripts

A simple deployment option is to place source code in a file that begins with a #! line specifying
the absolute path to an executable that can evaluate the script. This could be the absolute path
to the Swish executable. More often /usr/bin/env is used to locate the Swish executable via the
program search path. For example, we might have:

$ cat hello
#!/usr/bin/env swish
(printf "Hello, World!\n")
$ chmod +x hello
$./hello
Hello, World!

In the preceding example, running ./hello invokes the Swish executable with ./hello as its sole

9

command-line argument. At boot time, Swish calls swish-start to process its command-line
arguments. Since the first argument is not an option (-h, --help, etc.), swish-start runs the file
named by that argument with the remaining arguments, if any, as its command-line arguments.
For example, the following Echo script processes the arguments that are passed to the script.

$ cat Echo
#!/usr/bin/env swish
(printf "~{~:(~a~)~}\n" (command-line-arguments))
$ chmod +x Echo
$./Echo some camel case identifiers are hard to read
SomeCamelCaseIdentifiersAreHardToRead

To provide arguments to the Swish executable before the script filename, add the -S option to env
and add the desired arguments after swish. Here the -q option suppresses the startup message and
sets the prompt to the empty string, and the -- option tells Swish to start a REPL after loading
the script.

$ cat howdy
#!/usr/bin/env -S swish -q --
(printf "Howdy, Folks!\n")
(printf "prompt: ~s\n" (waiter-prompt-string))
(printf "command-line: ~s\n" (command-line-arguments))
$ chmod +x howdy
$./howdy
Howdy, Folks!
prompt: ""
command-line: ("-q" "--" "./howdy")
(waiter-prompt-string "yes?")
yes? (+ 2 3)
5
yes? (exit)

Limitations

There are several constraints to consider when deploying Swish scripts.

• Naturally, Swish must be installed. To use /usr/bin/env as in the preceding examples, the
PATH environment variable must contain the directory where the Swish executable is installed.
This is preferable to hard-coding the absolute path to the Swish executable in your scripts.

• Chez Scheme must also be installed. In particular, the version of Chez Scheme that was used
to build Swish must be installed. Swish must be able to locate the Chez Scheme boot files
petite.boot and scheme.boot.
If Chez Scheme is installed in a non-standard location, it may be necessary to set the SCHEME-
HEAPDIRS environment variable to help Swish locate the boot files. To see where Swish looks
for boot files, run swish --verbose.

10

• The #! scripts shown in this section do not run under Windows. In MinGW/MSYS, these
scripts may work unless Posix path conversion is disabled by setting the MSYS_NO_PATHCONV
environment variable to 1. In Cygwin, these scripts may work if the directory containing the
script is mounted as its Windows twin, e.g., C:/Users and /Users. For either of these options
to work, Swish must be able to locate the appropriate Chez Scheme DLL via the standard
search order. Scripts will fail if the current drive is not the drive containing the script.

2.2.2 Linked Programs

A linked program is simply a Scheme object file that begins with a “#!/usr/bin/env swish”
line. Swish runs these programs the same way it runs scripts, except that swish-start skips the
compilation step when it runs the file.

We can use swish-build to build a linked program foo from a source file foo.ss, as follows:

$ swish-build -o foo foo.ss

Limitations

All of the limitations in Section 2.2.1 apply. Since linked programs use /usr/bin/env, the Swish
executable must be in a directory in the PATH on the target machine.

In addition, the Swish executable (and supporting code) that is used to run a linked program must
be identical to the one that was used to build it.

2.2.3 Stand-alone Programs

A stand-alone program consists of an executable and a boot file that must be installed in the same
directory. The name of the boot file is the same as the executable’s name with any extension
replaced by .boot. The executable is simply a copy of the Swish executable. The boot file includes
the necessary Chez Scheme boot files along with the compiled application code.

We can use swish-build to build a linked program foo from a source file foo.ss by specifying a
base boot file via the -b option:

$ swish-build -o foo foo.ss -b petite

Limitations

On Windows, the Swish DLLs osi.dll, uv.dll, and sqlite3.dll must be installed in the same
directory as the program executable. These DLLs can be found in the directory containing the
Swish executable. In addition, the program executable must be able to locate Microsoft’s C Runtime
Library vcruntime140.dll and the appropriate Chez Scheme DLL via the standard search order.

11

2.2.4 Services

On Linux and Windows, a Swish application can be started as a service that listens for system
shutdown, suspend, and resume messages. To start a Swish application as a service, pass /SERVICE
as the first command-line argument. On Windows, two additional command-line arguments are
required: the service name and the path to the log file where stdout and stderr are redirected. See
swish_service and osi_is_service for details.

2.3 Running Tests

Use the mat and isolate-mat forms described in Section 2.4.4 to define automated tests. Use
the swish-test script to run tests and report the results. This script treats each file with a .ms
extension as a suite of tests. See swish-test --help all for details.

2.4 Programming Interface

2.4.1 Configuration

(app:config [obj]) procedure
returns: a hashtable

When called with no arguments, the app:config procedure returns the configuration data cached
in a private process parameter. If the cache is empty, app:config first populates the cache by
reading data from the file identified by app:config-filename. If that file does not exist, the
procedure returns an empty hashtable. Otherwise, app:config expects the file to contain a single
JSON object.

The optional obj must be #f or a hashtable in the form returned by json:make-object. Calling
app:config with #f clears the cache. Calling app:config with a hashtable installs the hashtable
as the cached value.

(app:config-filename) procedure
returns: the name of the application’s configuration file

The app:config-filename procedure returns the name of the application configuration file that
app:config will read. The filename returned depends on the value of app:path.

If app:path is set to a value of the form ".../bin/app-name[.ext]", that ends with a "bin" directory,
then the result is a config file in the corresponding "lib" directory ".../lib/app-name/config".
If app:path is set to a value of the form ".../app-name[.ext]", then the result is a file with a
.config extension in the same directory: ".../app-name.config".

If app:path is not set, the result is a .config file in the base directory identified by value of
the base-dir parameter. This can be useful when loading program code at the REPL during
interactive development.

(app:name [name]) parameter
value: a string or #f

12

The app:name parameter returns the short descriptive name of the application, if known. This
value is used by the app-exception-handler to identify the program that is reporting an error.
The value is also useful as an argument to display-usage and display-help.

When called with a string, app:name treats the value as a file-system path and stores only the last
element of the path, dropping any file extension.

For stand-alone programs, swish-start sets this parameter to the path of the running executable.
For scripts or linked programs, swish-start sets this parameter to the path of the script or program
file.

(app:path [path]) parameter
value: an absolute path or #f

The app:path parameter returns the absolute path to the script or program, if known. This value
is used by app:config-filename to determine the location of the application’s configuration file.
For scripts and linked programs, where the actual executable is Swish, this value is different from
that returned by osi_get_executable_path.

When called with a string, app:path calls get-real-path to obtain an absolute path and stores
the result.

(base-dir [path]) parameter
value: a file-system path

When called without arguments, base-dir returns the file-system path of the application’s base
directory. Otherwise, the base directory is set to path, which must specify the file-system path
of a directory that exists and is writable by the application. Setting base-dir sets the values of
data-dir, log-file, and tmp-dir so that they refer to locations within the base directory.

When the application starts, base-dir is set to the current directory.

(data-dir [path]) parameter
value: a file-system path

The data-dir parameter holds the file-system path of a directory in which the application can
write persistent data. Applications should not assume that this directory exists, but should instead
use make-directory-path when creating files under data-dir. Its initial value is the path to a
"data" subdirectory of the directory specified by base-dir.

(log-file [filename]) parameter
value: a file name

The log-file parameter holds the name of the file containing the SQLite log database managed
by the log-db gen-server, which creates the file and the requisite directory structure when started.
Its initial value is the path to a "Log.db3" file in the directory specified by data-dir.

(tmp-dir [path]) parameter
value: a file-system path

The tmp-dir parameter holds the file-system path of a directory in which the application can write
ephemeral data. Applications should not assume that this directory exists, but should instead use

13

make-directory-path when creating files under tmp-dir. Its initial value is the path to a "tmp"
subdirectory of the directory specified by base-dir.

(include-line filenme [not-found]) syntax
returns: see below

The include-line macro expects a string constant filename identifying a file either via absolute
path or as a path relative to a directory in source-directories. If such a file can be found at
expand time, include-line expands to a string containing the first line of that file or the end-of-
file object if the file is empty. If the file cannot be found, include-line expands to (not-found
filename), where not-found defaults to an expression that raises a syntax error indicating that the
file could not be found.

(software-info) procedure
value: a JSON object

The software-info procedure returns a JSON object containing the values stored by software-
product-name, software-revision, and software-version. Swish populates these parameters
for the swish and chezscheme keys with values that are determined at compile time.

(software-product-name [key] [value]) parameter
value: a string or #f

The software-product-name procedure stores or retrieves the product name under the path (key
product-name) in the (software-info) object. If value is omitted, this procedure returns the
value, if any, associated with key, or else #f. If key and value are omitted, this procedure returns
the value associated with the key (string->symbol (or (app:name) "swish")). If specified, key
must be a symbol and value must be a string. If key and value are specified and a value has already
been set for key, this procedure has no effect.

(software-revision [key] [value]) parameter
value: a string or #f

The software-revision procedure stores or retrieves the software revision under the path (key
revision) in the (software-info) object. If value is omitted, this procedure returns the value, if
any, associated with key, or else #f. If key and value are omitted, this procedure returns the value
associated with the key (string->symbol (or (app:name) "swish")). If specified, key must be
a symbol and value must be a string. If key and value are specified and a value has already been
set for key, this procedure has no effect.

(software-version [key] [value]) parameter
value: a string or #f

The software-version procedure stores or retrieves the software version under the path (key
version) in the (software-info) object. If value is omitted, this procedure returns the value, if
any, associated with key, or else #f. If key and value are omitted, this procedure returns the value
associated with the key (string->symbol (or (app:name) "swish")). If specified, key must be
a symbol and value must be a string. If key and value are specified and a value has already been
set for key, this procedure has no effect.

14

2.4.2 Program Life Cycle

(app-exception-handler obj) procedure
returns: unspecified

When a Swish application starts, it sets the default value of the base-exception-handler param-
eter to app-exception-handler. This procedure expects a single argument, typically a condition
or an object passed to throw or raise, which it saves in the parameter debug-condition.

If app:name is set, then app-exception-handler writes a message to the console error port,
prefixed with the application name, before calling reset. If obj is a condition, then the message is
formed by stripping the “Warning:” or “Exception:” prefix from the output of display-condition.
Otherwise, the message is generated by calling exit-reason->english on obj.

If app:name is not set, then app-exception-handler calls the default exception handler.

(app-sup-spec [start-specs]) parameter
value: a list of child specifications (see page 109)

The app-sup-spec parameter supplies the start-specs that define the tree of child processes that
are started by app:start and supervised by the main-sup gen-server. The initial value of app-
sup-spec is constructed by calling make-swish-sup-spec with swish-event-logger as the sole
logger.

(app:shutdown [exit-code]) syntax

This is an alias for application:shutdown.

(app:start) procedure
returns: ok

The app:start procedure calls application:start with a starter thunk that calls supervi-
sor:start&link with the value of the app-sup-spec parameter.

(make-swish-sup-spec loggers) procedure
returns: a list of child specifications (see page 109)

The make-swish-sup-spec procedure builds a list of child specifications representing the default
supervision tree described in Section 1.2. The loggers argument is a list of <event-logger> tuples
that will be passed to log-db:setup when the log-db gen-server is started.

(swish-start arg . . .) procedure
returns: see below

When a stand-alone program starts, it initializes several parameters: app:name, app:path, command-
line, and command-line-arguments. When a Swish script, linked program, or REPL is started,
it performs this initialization by applying swish-start to the original command-line arguments.

The swish-start procedure expects zero or more strings as arguments and scans them left to right.
It adds each string that begins with a single dash (-) or double dash (--) to a set of options to be

15

handled later. If it encounters the string "--", it sets the REPL option and saves the remaining
arguments as files to be loaded. If it encounters a string that does not begin with a dash, it stops
scanning the arguments and marks that string and those that follow as ordinary arguments.

If swish-start finds --help among the options, it displays a summary of Swish’s command-line
options and returns. If it finds --version among the options, it displays version information
and returns. If the REPL option is set or it finds no ordinary arguments, then it suppresses the
startup message and waiter prompt if --quiet is among the options, then loads any files that were
specified, and then calls new-cafe. Otherwise, it treats the first ordinary argument as a script or
linked program. In this case, it installs the ordinary arguments as the value of command-line, sets
app:name and app:path to the first of them, sets command-line-arguments to the remaining ones,
and clears app:config before loading the script or linked program. If an error occurs while loading
the script or linked program, Swish exits with an exit code of 1. Otherwise, Swish exits normally.

When it starts a REPL, script, or linked program, swish-start attempts to import any libraries
found in library-list whose library path begins with the symbol swish.

repl-level parameter
value: nonnegative fixnum

The repl-level parameter returns the nesting depth of the swish-start REPL. The value of this
parameter is initially zero; it is incremented when a process enters the swish-start REPL. It is
not affected by new-cafe.

2.4.3 Foreign Interface

Scheme libraries that rely on shared objects must arrange to call load-shared-object before
calling foreign-procedure or calling make-ftype-pointer on a function ftype. We must consider
shared-object naming conventions and search paths on different platforms when calling load-
shared-object. We can provide its filename argument through some combination of conditional
compilation, hard-coded relative or absolute paths, and general computation.

The provide-shared-object and require-shared-object procedures in this section offer a sim-
ple way to: factor platform dependencies out of client code, load shared objects by absolute path
to avoid search, specify shared object file names as paths relative to the application configuration
file, and hook the operation that loads shared object code.

These procedures coordinate via the application configuration object stored in app:config, which
is populated on demand by reading the file specified by app:config-filename. A Scheme library
can call require-shared-object before its foreign-procedure definitions and rely on demand-
loading of the configuration file to supply the absolute path to the shared object code when the
library is invoked. This simplifies a process that can otherwise be complicated by the fact that
Chez Scheme invokes a library lazily as soon as one of its exports may be referenced.

To see how these procedures are decoupled, consider the following Swish REPL transcript on a
64-bit Linux machine:

> (provide-shared-object 'libc "/lib64/libc.so.6")
> (foreign-entry? "fork")
#f

16

> (require-shared-object 'libc)
> (foreign-entry? "fork")
#t
> (let ([op (open-file-to-write (app:config-filename))])

(on-exit (close-port op)
(json:write op (app:config) 0)))

> (exit)

If we start a new Swish REPL, we can call require-shared-object without first calling provide-
shared-object because we explicitly wrote the value of app:config to the location specified by
app:config-filename before exiting the original REPL.

> (foreign-entry? "fork")
#f
> (require-shared-object "libc")
> (foreign-entry? "fork")
#t
> (display (utf8->string (read-file (app:config-filename))))
{

"swish": {
"shared-object": {

"libc": {
"a6le": {

"file": "/lib64/libc.so.6"
}

}
}

}
}

(provide-shared-object so-name filename) procedure
returns: unspecified

The provide-shared-object procedure expects a symbol so-name as the generic name of a shared
object and a string filename that is the name of the actual file containing the shared object code.
This procedure records filename in app:config under a path that includes so-name and the host
machine-type.

(require-shared-object so-name [handler]) procedure
returns: unspecified

The require-shared-object procedure loads a shared object via an absolute path to prevent
load-shared-object from searching for the shared object file in a system-specific set of directories.

The so-name argument is a symbol that specifies the generic name of a shared object. The optional
handler is a procedure that expects three arguments: filename is the absolute path to the shared
object file, key is so-name, and dict is the hashtable retrieved from app:config via a path that
includes so-name and the host machine-type. This hashtable contains a key file whose value is

17

the file name originally supplied by provide-shared-object. The handler might examine other
keys within the hashtable before loading the shared object. The default handler simply calls load-
shared-object on filename.

If the file name retrieved from app:config is a relative path, then require-shared-object de-
termines the absolute path by treating the file name as a path relative to the parent directory
containing the application configuration file name returned by app:config-filename.

(define-foreign name (arg-name arg-type) . . .) syntax
expands to:
(begin

(define name* (foreign-procedure (symbol->string 'name) (arg-type . . .) ptr))
(define (name arg-name . . .)

(match (name* arg-name . . .)
[(,who . ,err)
(guard (symbol? who))
(io-error 'name who err)]

[,x x])))

The define-foreign macro defines two procedures: name* is a raw foreign procedure that expects
the specified argument types and returns a ptr value, while name is a wrapper that calls name*
and raises an io-error if it returns an error pair.

2.4.4 Testing

The (swish mat) library provides methods to define, iterate through, and run test cases, and to
log the results. The swish-test script provides a convenient way to run tests and report the
results. See swish-test --help all for details. To access the (swish mat) library directly, run
swish-test --repl instead of swish, then import the library as usual.

Test cases are called mats and consist of a name, a set of tags, and a test procedure of no arguments.
The set of mats is stored in reverse order in a single, global list. The list of tags allows the user
to group tests or mark them. For example, tags can be used to note that a test was created for a
particular change request.

(mat name (tag . . .) e1 e2 . . .) syntax
expands to: (add-mat ’name ’(tag . . .) (lambda () e1 e2 . . .))

The mat macro creates a mat with the given name, tags, and test procedure e1 e2 . . . using the
add-mat procedure.

(isolate-mat name (tag . . .) e1 e2 . . .)
(isolate-mat name (settings [key val] . . .) e1 e2 . . .)

syntax

expands to: (mat name (tag . . .) ($isolate-mat (lambda () e1 e2 . . .)))

Tests involving process operations, such as spawn, send, and receive, should use isolate-mat in
place of mat to isolate the host system from the test code. The isolate-mat macro is provided by
the (swish testing) library, which can be accessed via swish-test.

18

The settings form can be used within isolate-mat to override the following defaults:

key default description
tags () a list of tag . . .
timeout 60000 deadline for test to complete, in milliseconds;

computed as (scale-timeout ’isolate-mat)
process-cleanup-deadline 500 maximum time to wait for spawned processes to

terminate, in milliseconds
process-kill-delay 100 delay in milliseconds before killing each spawned

process that did not terminate by the process-
cleanup-deadline

(default-timeout timeout [value]) procedure
returns: see below

Given a symbol timeout and a value, which must be a nonnegative fixnum or the symbol infinity,
default-timeout associates timeout with value and returns an unspecified value. If the optional
value is omitted, default-timeout returns the value currently associated with timeout, or raises an
exception if none. If timeout is a fixnum, default-timeout is the identity function. The following
table lists predefined timeouts and their associated values.

timeout value use
infinity infinity
isolate-mat 60000 default timeout for isolate-mat
os-process 10000 used internally by some Swish tests that call spawn-os-process

(scale-timeout timeout) procedure
returns: see below

The scale-timeout procedure resolves timeout by calling (default-timeout timeout). If the
result is the symbol infinity, it is returned unmodified. If the result is a fixnum, scale-timeout
returns the product of that number and the scale factor obtained by converting the value of the
TIMEOUT_SCALE_FACTOR environment variable to a number via string->number. The scale factor
defaults to 1 and must be nonnegative. The product is rounded to an exact number.

(mat:add-annotation! expr) syntax
returns: unspecified

The mat:add-annotation! macro extends the list of annotations recorded in the meta-data for
the mat result of the current mat. Each annotation records the erlang:now timestamp, the source
for the call site, if available, and the value of expr , which must evaluate to a valid JSON datum.
This macro must be called only within the dynamic extent of a running mat. See load-results
for more information.

(add-mat name tags test) procedure
returns: unspecified

The add-mat procedure adds a mat to the front of the global list. name is a symbol, tags is a list,
and test is a procedure of no arguments.

19

If name is already used, an exception is raised.

(run-mat name reporter) procedure
returns: see below

The run-mat procedure runs the mat of the given name by executing its test procedure with an
altered exception handler. If the test procedure completes without raising an exception, the mat
result is pass. If the test procedure raises exception e, the mat result is (fail . e).

After the mat completes, the run-mat procedure tail calls (reporter name tags result statistics).

If no mat with the given name exists, an exception is raised.

(run-mats [name] . . .) syntax
returns: unspecified

The run-mats macro runs each mat specified by symbols name When no names are supplied,
all mats are executed. After each mat is executed, its result, name, and exception if it failed
are displayed. When the mats are finished, a summary of the number run, passed, and failed is
displayed.

(run-mats-to-file filename) procedure
returns: unspecified

The run-mats-to-file procedure executes all mats and writes the results into the file specified
by the string filename. If the file exists, its contents are overwritten. The file format is a sequence
of JSON objects readable with load-results and summarize.

(for-each-mat procedure) procedure
returns: unspecified

The for-each-mat procedure calls (procedure name tags) for each mat, in no particular order.

(load-results filename) procedure
returns: a JSON object

The load-results procedure reads the contents of the file specified by string filename and returns
a JSON object with the following keys:

meta-data a JSON object
report-file filename
results a list of JSON objects

The meta-data object contains at least the following keys:

completed #t if test suite completed, #f otherwise
hostname (osi_get_hostname) of the host system
machine-type (machine-type) of the host system
test-file name of the file containing the tests
test-run uuid generated by swish-test for the set of tests run
uname the result from get-uname as a JSON object containing os-machine,

os-release, os-system, and os-version

20

If the test suite completed, the meta-data object also contains the following keys:

date (format-rfc2822 (current-date)) at the start of the test suite
software-info (software-info) for the tested code
timestamp (erlang:now) at the start of the test suite

Each result is a JSON object with the following keys:

message error message from failing test, or empty string
meta-data a JSON object that contains:

annotations an ordered list of JSON objects recording data from
mat:add-annotation!,

start-time (erlang:now) at the start of the test, and
end-time (erlang:now) at the end of the test

sstats a JSON object representing the sstats-difference for the test
stacks if test failed with exception e, then

(map stack->json (exit-reason->stacks e))
tags a list of strings corresponding to the symbolic tags in the mat form
test a string corresponding to the symbolic mat name
test-file the name of the test file
type the type of result: "pass", "fail", "skip"

(summarize files) procedure
returns: five values: the number of passing mats, the number of failing mats, the number of
skipped mats, the number of completed suites, and the length of files.

The summarize procedure reads the contents of each file in files, a list of string filenames, and
returns the number of passing mats, the number of failing mats, the number of skipped mats, the
number of completed test suites, and the number of files specified. An error is raised if any entry
is malformed.

21

Chapter 3

Operating System Interface

3.1 Introduction

This chapter describes the operating system interface. Swish is written in Chez Scheme and runs
on Linux, macOS, and Windows. It provides asynchronous I/O via libuv [21] and database support
via SQLite [22].

3.2 Theory of Operation

The operating system interface is written in C99 [5] as a shared library that links to the Chez
Scheme, libuv, and SQLite libraries. Please refer to Chapter 4 of the Chez Scheme Version 9
User’s Guide [6] for information on the foreign function interface. C++ is not used because C++
destructors may interact badly with setjmp/longjmp, used by Chez Scheme and Swish.

The single-threaded version of Chez Scheme is used because of its simplicity. All Scheme code
runs in the main thread, and all C code must call Scheme functions from the main thread only. In
order to keep this thread responsive, operations that block for more than a couple milliseconds are
performed asynchronously.

Operations that take longer should be run in a worker thread. Results are communicated back to
the main thread using a libuv async handle. Beware of running long operations in the libuv thread
pool because there are only a few worker threads (four by default).

For each asynchronous function in the operating system interface, a Scheme callback procedure is
passed as the last argument. This callback procedure is later returned to Scheme in a list that
includes the results of the asynchronous function call. This approach is simpler and more efficient
than calling the callback procedure directly from the C side.

Any time C code stores a pointer to a non-immediate Scheme object, the object must be locked. The
operating system interface locks Scheme objects when it stores them in data structures managed
in the C heap and unlocks them when the data structures are deallocated.

The operating system interface uses port objects for files, console input, pipes to other processes,
and TCP/IP connections. A port object is created by the various open functions, which return a

22

port handle that is used for read, write, and close operations. Once a port is closed, its port object
is freed.

Whenever Scheme receives a handle to an object allocated in the C heap, the handle is wrapped in
a Scheme record and registered with a guardian. Each type of handle has an associated finalizer
(see add-finalizer) that uses its guardian to free the objects from the C heap after each garbage
collection (see the finalizer process in §4.3).

For interface functions that can fail, an error pair (who . errno) is returned, where who is a
symbol representing the name of the particular function that failed and errno is either an error
number or, in the case of certain SQLite functions, a pair whose car is the error number and cdr is
the English error string.

Section 3.3 describes the programming interface from the C side. The Scheme library (osi) provides
foreign procedures for each C function using the same name. For functions that may return an error
pair, two Scheme procedures are defined: one that converts the error pair into an exception, and one
with an asterisk suffix that returns the error pair. For example, if the osi_read_port* procedure
returns error pair (who . errno), the osi_read_port procedure raises exception #(osi-error
osi_read_port who errno).

3.3 Programming Interface

Unless otherwise noted, all C strings are encoded in UTF-8.

3.3.1 C Interface

A single libuv I/O loop is used, osi_loop, which is unique to the operating system interface in
order to avoid collisions with other libuv integrations.

void osi_init(void); function

The osi_init function disables libuv stdio inheritance, initializes osi_loop, initializes the timer
used by osi_get_callbacks, and sets the list of callbacks to (). On Windows, it calls timeBe-
ginPeriod to set the timer resolution to 1 ms. This function must be called exactly once from the
main thread before any other osi_* functions are called.

void osi_add_callback_list(ptr callback, ptr args); function

The osi_add_callback_list function adds the callback list (callback . args) to the list of call-
backs. This function must be called only on the main thread and only within the context of the
event-loop’s call to osi_get_callbacks, e.g., within a libuv callback such as uv_async_cb.

void osi_add_callback1(ptr callback, ptr arg); function

The osi_add_callback1 function adds the callback list (callback arg) to the list of callbacks. This
function must be called only on the main thread and only within the context of the event-loop’s
call to osi_get_callbacks, e.g., within a libuv callback such as uv_async_cb.

23

void osi_add_callback2(ptr callback, ptr arg1, ptr arg2); function

The osi_add_callback2 function adds the callback list (callback arg1 arg2) to the list of call-
backs. This function must be called only on the main thread and only within the context of the
event-loop’s call to osi_get_callbacks, e.g., within a libuv callback such as uv_async_cb.

void osi_add_callback3(ptr callback, ptr arg1, ptr arg2, ptr arg3); function

The osi_add_callback3 function adds the callback list (callback arg1 arg2 arg3) to the list of
callbacks. This function must be called only on the main thread and only within the context of the
event-loop’s call to osi_get_callbacks, e.g., within a libuv callback such as uv_async_cb.

ptr osi_make_error_pair(const char* who, int error); function

The osi_make_error_pair function returns the error pair (who . error). This function must be
called on the main thread only.

int osi_send_request(handle_request_func handler, void* payload); function

The osi_send_request function blocks the calling thread until the main thread returns from calling
handler(payload) within osi_get_callbacks. The handler function should execute quickly to
avoid blocking the event loop. Typical handlers call osi_add_callback_list or one of its variants.
osi_send_request returns zero if successful. Otherwise, it returns a libuv error code. Calling it
from the main thread returns UV_EPERM.

char* osi_string_to_utf8(ptr s, size_t* utf8_len); function

The osi_string_to_utf8 function returns the address of a freshly allocated nul-terminated string
representing the Scheme string s. The length in bytes of this string excluding the terminating nul
is written to *utf8_len. It returns NULL if malloc fails. It is the caller’s responsibility to call
free when this memory is no longer needed.

int swish_run(int argc, const char* argv[], void (*custom_init)(void)); function

The swish_run function:

1. resolves the boot file based on argv[0] by replacing the extension, if any, with .boot,

2. initializes Scheme by calling Sscheme_init, Sregister_boot_file, and Sbuild_heap,

3. initializes the operating system interface by calling osi_init,

4. establishes a context for osi_exit,

5. starts the application by invoking the value of the scheme-start parameter, and

24

6. returns the status provided by osi_exit.

#if defined(__linux__)
int swish_service(int argc, const char* argv[]);
#elif defined(_WIN32)
int swish_service(const wchar_t* service_name, const wchar_t* logfile,

int argc, const char* argv[]);
#endif

function

On Linux, the swish_service function:

1. resolves the boot file based on argv[0] by replacing the extension, if any, with .boot,

2. initializes Scheme by calling Sscheme_init, Sregister_boot_file, and Sbuild_heap,

3. initializes the operating system interface by calling osi_init,

4. adds a handler to listen for messages from systemd-logind on the D-Bus system bus,

5. establishes a context for osi_exit,

6. starts the application by invoking the value of the scheme-start parameter,

7. tears down the handler on exit, and

8. returns the status provided to osi_exit.

If the handler receives a PrepareForShutdown message with the argument true, it calls $shutdown.
If it receives a PrepareForSleep message, it calls $suspend if the argument is true and $resume
if the argument is false. See Figure 3.1 for information on these callbacks.

On Windows, the swish_service function:

1. redirects stdout and stderr to logfile and stdin from NUL,

2. connects to the Service Control Manager, establishing a new thread of execution to:

(a) resolve the boot file based on argv[0] by replacing the extension, if any, with .boot,

(b) initialize Scheme by calling Sscheme_init, Sregister_boot_file, and Sbuild_heap,

(c) initialize the operating system interface by calling osi_init,

(d) register a control handler with the Service Control Manager,

(e) establish a context for osi_exit, and

(f) start the application by invoking the value of the scheme-start parameter

3. sets the service status to the status provided by osi_exit.

25

Once running as a service, the Service Control Manager may send control messages to the process
via the control handler. For a stop message, the control handler calls the $shutdown top-level
procedure. For a suspend power event or resume power event, the control handler calls $suspend
or $resume respectively. See Figure 3.1 for information on these callbacks.

symbol default top-level value with statistics gen-server (Chapter 13)
$shutdown application:shutdown application:shutdown
$suspend void statistics:suspend
$resume void statistics:resume

Figure 3.1: Service callbacks.

(osi_is_service) procedure
returns: a boolean

If Swish is running as a service, then osi_is_service returns true, otherwise false.

3.3.2 System Functions and Procedures

ptr osi_get_argv(void); function

The osi_get_argv function returns a Scheme vector of strings constructed from the most recent
arguments passed to osi_set_argv.

size_t osi_get_bytes_used(void); function

The osi_get_bytes_used function returns the number of bytes used by the C run-time heap. On
Linux, it calls the mallinfo function. On macOS, it calls the mstats function. On Windows, it
calls the _heapwalk function.

(osi_get_free_memory) procedure
returns: an unsigned integer

The osi_get_free_memory procedure returns the number of bytes of free memory as reported by
uv_get_free_memory.

(osi_get_total_memory) procedure
returns: an unsigned integer

The osi_get_total_memory procedure returns the number of bytes of total physical memory as
reported by uv_get_total_memory.

ptr osi_get_callbacks(uint64_t timeout); function

The osi_get_callbacks function returns a list of callback lists in reverse order of time received.
When the list is empty, it blocks up to timeout milliseconds before returning. Each callback list has

26

the form (callback result . . .), where callback is the callback procedure passed to the asynchronous
function that returned one or more results.

const char* osi_get_error_text(int err); function

The osi_get_error_text function returns the English string for the given error number.

ptr osi_get_hostname(void); function

The osi_get_hostname function returns the host name from uv_os_gethostname.

ptr osi_get_uname(void); function

The osi_get_uname function returns a <uname> tuple of the values retrieved by uv_os_uname.

<uname> tuple

system: operating system name as a string
release: operating system release as a string
version: operating system version as a string

machine: hardware architecture identifier as a string

uint64_t osi_get_hrtime(void); function

The osi_get_hrtime function returns the current high-resolution real time in nanoseconds from
uv_hrtime. It is not related to the time of day and is not subject to clock drift.

uint64_t osi_get_time(void); function

The osi_get_time function returns the current clock time in milliseconds in UTC since the UNIX
epoch January 1, 1970. On Windows, it calls the GetSystemTimeAsFileTime function in ker-
nel32.dll. On all other systems, it calls the clock_gettime function with CLOCK_REALTIME.

int osi_is_quantum_over(void); function

The osi_is_quantum_over function returns 1 if the current time from uv_hrtime is greater than
or equal to the threshold set by the most recent call to osi_set_quantum and 0 otherwise.

ptr osi_list_uv_handles(void); function

The osi_list_uv_handles function calls uv_walk and returns a list of pairs (handle . type),
where handle is the address of the uv_handle_t and type is the uv_handle_type.

27

ptr osi_make_uuid(void); function

The osi_make_uuid function returns a new universally unique identifier (UUID) as a bytevector.
On Windows, it calls the UuidCreate function in rpcrt4.dll. On all other systems, it calls the
uuid_generate function.

(string->uuid s) procedure
returns: a UUID bytevector

The string->uuid procedure returns the bytevector uuid for string s such that (uuid->string
uuid) is equivalent to s, ignoring case. If s is not a string with uppercase or lowercase hexadecimal
digits and hyphens as shown in uuid->string, exception #(bad-arg string->uuid s) is raised.

(uuid->string uuid) procedure
returns: a string

The uuid->string procedure returns the uppercase hexadecimal string representation of uuid,
HH 3HH 2HH 1HH 0-HH 5HH 4-HH 7HH 6-HH 8HH 9-HH 10HH 11HH 12HH 13HH 14HH 15, where HH i

is the 2-character uppercase hexadecimal representation of the octet at index i of bytevector uuid.
If uuid is not a bytevector of length 16, exception #(bad-arg uuid->string uuid) is raised.

void osi_set_argv(int argc, const char *argv[]); function

The osi_set_argv function stores the argv pointer to a C vector of argc strings for use in the
osi_get_argv function. It does not copy the strings, so the caller must not deallocate the memory
for the arguments.

void osi_set_quantum(uint64_t nanoseconds); function

The osi_set_quantum function sets the threshold for osi_is_quantum_over to be the current time
from uv_hrtime plus the given number of nanoseconds.

3.3.3 Port Functions

The port functions in this section provide generic read, write, and close operations for port objects.
The specific implementation depends on the type of port object.

Port handles point to structures whose first element is a pointer to a virtual function table whose
type is osi_port_vtable_t. This table defines the specific close, read, and write procedures.

ptr osi_read_port(uptr port, ptr buffer, size_t start_index, uint32_t size,
int64_t offset, ptr callback);

function

The osi_read_port function issues a read on the given port of size bytes into the bytevector buffer
at the zero-based start_index. For file ports, offset specifies the starting file position or −1 for
the current position; for all other port types, offset must be −1. The function returns #t when

28

the read operation is issued and an error pair otherwise. When the read operation finishes, it
enqueues the callback list (callback result), where result is the nonnegative number of bytes read
when successful and a negative error code otherwise.

ptr osi_write_port(uptr port, ptr buffer, size_t start_index, uint32_t size,
int64_t offset, ptr callback);

function

The osi_write_port function issues a write on the given port of size bytes from the bytevector
buffer at the zero-based start_index. For file ports, offset specifies the starting file position or
−1 for the current position; for all other port types, offset must be −1. The function returns #t
when the write operation is issued and an error pair otherwise. When the write operation finishes,
it enqueues the callback list (callback result), where result is the nonnegative number of bytes
written when successful and a negative error code otherwise.

ptr osi_close_port(uptr port, ptr callback); function

The osi_close_port function issues a close on the given port. It returns #t when the close
operation is issued and an error pair otherwise. When the close operation finishes, it deallocates
the port object and enqueues the callback list (callback errno), where errno is 0 when successful
and a negative error code otherwise.

3.3.4 Process Functions

void osi_exit(int status); function

The osi_exit function returns status to the context established by swish_run or swish_service,
if any. Otherwise it calls the _exit function to terminate the current process with the given exit
status. It does not return. The exit function is not used because on Unix systems it blocks if there
is an outstanding read on stdin.

ptr osi_spawn(const char* path, ptr args, ptr callback); function

The osi_spawn function uses the uv_spawn function to create a process with the list of string-
valued args whose standard input, output and error are connected to pipes. It returns #(to-stdin
from-stdout from-stderr pid) when the process has been successfully created and an error pair
otherwise. to-stdin is a port handle for writing bytes to standard input, from-stdout is a port
handle for reading bytes from standard output, from-stderr is a port handle for reading bytes from
standard error, and pid is an integer identifying the process.

When the process exits, the callback list (callback pid exit-status term-signal) is enqueued, where
pid is the integer process identifier, exit-status is the integer exit status, and term-signal is the
integer termination signal or 0 if the process did not terminate because of a signal.

ptr osi_spawn_detached(const char* path, ptr args); function

The osi_spawn_detached function uses the uv_spawn function to create a process with the list
of string-valued args and the UV_PROCESS_DETACHED flag set. It returns an integer identifying the
process when the process has been successfully created and an error pair otherwise.

29

int osi_get_pid(); function

The osi_get_pid function uses the uv_os_getpid function to return the current operating-system
process ID.

ptr osi_kill(int pid, int signum); function

The osi_kill function uses the uv_kill function to send termination signal signum to the process
identified by pid. It returns #t when successful and an error pair otherwise.

ptr osi_start_signal(int signum); function

The osi_start_signal function uses the uv_signal_start function to trap the signal signum. It
returns a signal handle when successful and an error pair otherwise. Signals are delivered via the
internal @deliver-signal procedure, which invokes the handler registered via signal-handler.

ptr osi_stop_signal(uptr signal_handle); function

The osi_stop_signal function stops trapping the signal and frees the signal handle returned by
osi_start_signal.

3.3.5 File System Functions

ptr osi_open_fd(int fd, int close); function

The osi_open_fd function returns a port handle for the file descriptor fd when successful and
an error pair otherwise. When the port is closed, the file descriptor fd is closed if and only if
close is non-zero. It is an error to set close to a non-zero value on a standard I/O file descriptor
(0 ≤ fd ≤ 2).

ptr osi_open_file(const char* path, int flags, int mode, ptr callback); function

The osi_open_file function issues an open using the uv_fs_open function and the given path,
flags, and mode. It returns #t when the open operation is issued and an error pair otherwise.
When the open operation finishes, it enqueues the callback list (callback result), where result is
the nonnegative port handle when successful and a negative error code otherwise.

The following constants are defined for flags:

O_APPEND O_CREAT O_DIRECT O_DIRECTORY O_DSYNC O_EXCL
O_EXLOCK O_NOATIME O_NOCTTY O_NOFOLLOW O_NONBLOCK O_RANDOM
O_RDONLY O_RDWR O_SEQUENTIAL O_SHORT_LIVED O_SYMLINK O_SYNC
O_TEMPORARY O_TRUNC O_WRONLY

The following constants are defined for mode:

30

S_IFMT S_IFIFO S_IFCHR S_IFDIR S_IFBLK S_IFREG S_IFLNK S_IFSOCK

ptr osi_get_executable_path(void); function

The osi_get_executable_path function uses the uv_exepath function to return the full path
string of the executable file of the current process when successful and an error pair otherwise.

ptr osi_get_file_size(uptr port, ptr callback); function

The osi_get_file_size function uses the uv_fs_fstat function to issue a status operation on
the file associated with the given file port. It returns #t when the status operation is issued and
an error pair otherwise. When the status operation finishes, it enqueues the callback list (callback
result), where result is the nonnegative file size when successful and a negative error code otherwise.

ptr osi_get_real_path(const char* path, ptr callback); function

The osi_get_real_path function uses the uv_fs_realpath function to issue a realpath operation
on the given path. It returns #t when the realpath operation is issued and an error pair otherwise.
When the realpath operation finishes, it enqueues the callback list (callback result), where result
is the string path when successful and a negative error code otherwise.

ptr osi_get_home_directory(void); function

The osi_get_home_directory function uses the uv_os_homedir function to return the string path
of the current user’s home directory and an error pair otherwise.

ptr osi_get_temp_directory(void); function

The osi_get_temp_directory function uses the uv_os_tmpdir function to return the string path
of the temporary directory and an error pair otherwise.

ptr osi_chmod(const char* path, int mode, ptr callback); function

The osi_chmod function issues a chmod operation using the uv_fs_chmod function and the given
path and mode. It returns #t when the chmod operation is issued and an error pair otherwise.
When the chmod operation finishes, it enqueues the callback list (callback errno), where errno is
0 when successful and a negative error code otherwise.

ptr osi_make_directory(const char* path, int mode, ptr callback); function

The osi_make_directory function issues a mkdir operation using the uv_fs_mkdir function with
the given path and mode. It returns #t when the mkdir operation is issued and an error pair

31

otherwise. When the mkdir operation finishes, it enqueues the callback list (callback errno),
where errno is 0 when successful and a negative error code otherwise.

ptr osi_list_directory(const char* path, ptr callback); function

The osi_list_directory function issues a scandir operation using the uv_fs_scandir function
with the given path. It returns #t when the scandir operation is issued and an error pair otherwise.
When the scandir operation finishes, it enqueues the callback list (callback result), where result is
((name . type) . . .) when successful and a negative error code otherwise.

name is the string name of the directory entry, and type is one of the following constants:

DIRENT_UNKNOWN DIRENT_FILE DIRENT_DIR DIRENT_LINK DIRENT_FIFO
DIRENT_SOCKET DIRENT_CHAR DIRENT_BLOCK

ptr osi_remove_directory(const char* path, ptr callback); function

The osi_remove_directory function issues a rmdir operation using the uv_fs_rmdir function
with the given path. It returns #t when the rmdir operation is issued and an error pair otherwise.
When the rmdir operation finishes, it enqueues the callback list (callback errno), where errno is
0 when successful and a negative error code otherwise.

ptr osi_rename(const char* path, const char* new_path, ptr callback); function

The osi_rename function issues a rename operation using the uv_fs_rename function of path to
new_path. It returns #t when the rename operation is issued and an error pair otherwise. When
the rename operation finishes, it enqueues the callback list (callback errno), where errno is 0 when
successful and a negative error code otherwise.

ptr osi_get_stat(const char* path, int follow, ptr callback); function

The osi_get_stat function issues a status operation on the given path. When follow is non-zero,
it uses the uv_fs_stat function to follow a symbolic link; otherwise, it uses the uv_fs_lstat
function. It returns #t when the status operation is issued and an error pair otherwise. When the
status operation finishes, it enqueues the callback list (callback result), where result is a <stat>
tuple when successful and a negative error code otherwise.

32

<stat> tuple

dev: device ID of the device containing the file
mode: mode of the file
nlink: number of hard links to the file

uid: user ID of the file
gid: group ID of the file

rdev: device ID if file is character or block special
ino: file serial number
size: For regular files, the file size in bytes. For symbolic links, the length in

bytes of the path in the link.
blksize: optimal block size for I/O
blocks: number of blocks allocated for the file
flags: user-defined flags for the file
gen: file generation number

atime: time of last access
mtime: time of last data modification
ctime: time of last status change

birthtime: time of file creation

The time entries contain (sec . nsec), where sec is the number of seconds in UTC since the UNIX
epoch January 1, 1970, and nsec is the number of nanoseconds after sec.

ptr osi_unlink(const char* path, ptr callback); function

The osi_unlink function issues an unlink operation using the uv_fs_unlink function with the
given path. It returns #t when the unlink operation is issued and an error pair otherwise. When
the unlink operation finishes, it enqueues the callback list (callback errno), where errno is 0 when
successful and a negative error code otherwise.

ptr osi_watch_path(const char* path, ptr callback); function

The osi_watch_path function uses the uv_fs_event_start function to track changes to path.
When path is a directory, its subdirectories are not tracked. Every time a change is detected, a
callback list (callback filename events) is enqueued, where events is 1 for rename, 2 for change,
and 3 for rename and change. If the watcher encounters an error, the callback list (callback errno)
is enqueued.

The osi_watch_path function returns a path watcher handle when successful and an error pair
otherwise.

void osi_close_path_watcher(uptr watcher); function

The osi_close_path_watcher function stops and closes the path watcher from osi_watch_path.

3.3.6 TCP/IP Functions

33

ptr osi_connect_tcp(const char* node, const char* service, ptr callback); function

The osi_connect_tcp function initiates a TCP/IP connection to host node on port service. It
returns #t when the operation starts and an error pair otherwise. The node string may be a host
name or numeric host address string, and the service string may be a service name or port number
represented as a string. The uv_getaddrinfo function is used to retrieve a list of addresses. For the
first address for which a connection succeeds using the uv_tcp_connect function, the completion
list (callback port) is enqueued, where port is a handle to a port that reads from and writes to
this connection. When the operation fails, the callback list (callback error-pair) is enqueued.

ptr osi_listen_tcp(const char* address, uint16_t port, ptr callback); function

The osi_listen_tcp function starts a TCP/IP listener on the given port of the IPv4 or IPv6
interface specified by address using the uv_listen function. It returns a TCP/IP listener handle
when successful and an error pair otherwise.

Specify an IPv4 interface address using dot-decimal notation, e.g. 127.0.0.1. Use 0.0.0.0 to
specify all IPv4 interfaces.

Specify an IPv6 interface address using colon-hexadecimal notation, e.g. ::1. Use :: to specify all
IPv6 interfaces.

Specify port 0 to have the operating system choose an available port number, which can be queried
using osi_get_tcp_listener_port.

When a connection is accepted, the callback list (callback port) is enqueued, where port is a handle
to a port that reads from and writes to this connection. When a connection fails, the callback list
(callback error-pair) is enqueued.

void osi_close_tcp_listener(uptr listener); function

The osi_close_tcp_listener function closes the given TCP/IP listener opened by osi_listen_-
tcp.

ptr osi_get_tcp_listener_port(uptr listener); function

The osi_get_tcp_listener_port function returns the port number of the given TCP/IP listener
opened by osi_listen_tcp when successful and an error pair otherwise.

ptr osi_get_ip_address(uptr port); function

The osi_get_ip_address function uses the uv_tcp_getpeername function to return a string rep-
resentation of the address of the peer of a TCP/IP port opened by osi_connect_tcp or osi_lis-
ten_tcp when successful and an error pair otherwise.

An IPv4 address is shown in dot-decimal notation followed by a colon and the port number, e.g.
127.0.0.1:80.

34

An IPv6 address is shown in bracketed colon-hexadecimal notation followed by a colon and the
port number, e.g. [::1]:80.

ptr osi_tcp_nodelay(uptr port, int enable); function

The osi_tcp_nodelay function calls uv_tcp_nodelay to enable or disable TCP_NODELAY for the
specified TCP/IP port based on the value of enable. It returns #t if successful and #f otherwise.
Enabling TCP_NODELAY disables the Nagle algorithm.

3.3.7 SQLite Functions

For each open SQLite database, a single worker thread performs the operations so that the main
thread is not blocked. SQLite is compiled in multi-thread mode. The documentation states:
“In this mode, SQLite can be safely used by multiple threads provided that no single database
connection is used simultaneously in two or more threads.” Concern: Two threads simultaneously
access a SQLite database connection. Mitigation: The operating system interface maintains a busy
bit for each database handle. Functions attempting to access a busy database return the error pair
(function-name . UV_EBUSY).

SQLite has five data types, which are mapped as follows to Scheme data types:

SQLite Scheme
NULL #f
INTEGER exact integer
REAL flonum
TEXT string
BLOB bytevector

SQLite extended result codes are enabled. Because the error codes overlap system error codes, the
operating system interface maps them to system error codes by negating the sum of the result code
and 6,000,000. The osi_get_error_text function supports these mapped error codes.

SQLite returns additional error information in English strings, so error pairs from SQLite are often
of the form (who . (errno . text)), where errno is the mapped SQLite extended result code and
text is the English error string.

ptr osi_open_database(const char* filename, int flags, ptr callback); function

The osi_open_database function starts a worker thread that uses the sqlite3_open_v2 function
to open the database specified by the filename string and flags. The flags specify, for example,
whether the database should be opened in read-only mode or whether it should be created when the
file does not exist. The function returns #t when the thread is created and an error pair otherwise.

When the open operation finishes, it enqueues the callback list (callback result), where result is
the database handle when successful and an error pair otherwise.

35

ptr osi_close_database(uptr database, ptr callback); function

The osi_close_database function starts a close operation in the given database worker thread. It
returns #t when the operation is started and an error pair otherwise.

After the worker thread finalizes all prepared statements, it uses the sqlite3_close function to
close the database. When finished, it enqueues the callback list (callback result), where result is
#t when successful and an error pair otherwise.

ptr osi_prepare_statement(uptr database, ptr sql, ptr callback); function

The osi_prepare_statement function starts a prepare operation on the given database worker
thread. It returns #t when the operation is started and an error pair otherwise.

The worker thread uses the sqlite3_prepare_v2 function to prepare the given sql statement. It
enqueues the callback list (callback result), where result is the statement handle when successful
and an error pair otherwise.

ptr osi_finalize_statement(uptr statement); function

The osi_finalize_statement function uses the sqlite3_finalize function to finalize the state-
ment. It returns #t when successful and an error pair otherwise. The return code from sqlite3_-
finalize is not checked because the statement is finalized regardless of the return value.

ptr osi_bind_statement(uptr statement, int index, ptr datum); function

The osi_bind_statement function maps the Scheme datum to SQLite and binds it to the prepared
statement at the zero-based SQL parameter index. It returns #t when successful and an error pair
otherwise. The error pair (osi_bind_statement . UV_EINVAL) is returned when datum cannot
be mapped to SQLite.

ptr osi_bind_statement_bindings(uptr statement, uptr mbindings); function

The osi_bind_statement_bindings binds the marshaled bindings mbindings to the prepared
statement. It returns #t when successful and an error pair otherwise.

ptr osi_clear_statement_bindings(uptr statement); function

The osi_clear_statement_bindings function uses the sqlite3_clear_bindings function to
clear the bindings for the statement. It returns #t when successful and an error pair otherwise.

ptr osi_get_last_insert_rowid(uptr database); function

The osi_get_last_insert_rowid function uses the sqlite3_last_insert_rowid function to re-
turn the last insert rowid of the database when successful and an error pair otherwise.

36

ptr osi_get_statement_columns(uptr statement); function

The osi_get_statement_columns function uses the sqlite3_column_count and sqlite3_col-
umn_name functions to return a vector of column name strings for the statement when successful
and an error pair otherwise.

ptr osi_get_statement_expanded_sql(uptr statement); function

The osi_get_statement_expanded_sql function uses the sqlite3_expanded_sql function to re-
turn the expanded SQL string associated with the statement when successful and an error pair
otherwise.

ptr osi_reset_statement(uptr statement); function

The osi_reset_statement function uses the sqlite3_reset function to reset the statement. It
returns #t when successful and an error pair otherwise.

ptr osi_step_statement(uptr statement, ptr callback); function

The osi_step_statement function issues a step operation on the database worker thread associated
with statement. It returns #t when the operation is started and an error pair otherwise.

The worker thread uses the sqlite3_step function to execute the statement. If it returns SQLITE_-
DONE, the callback list (callback #f) is enqueued. If it returns SQLITE_ROW, the callback list
(callback #(value . . .)) is enqueued with the vector of column values mapped from SQLite to
Scheme. Otherwise, the callback list (callback error-pair) is enqueued.

ptr osi_interrupt_database(uptr database); function

The osi_interrupt_database function calls the sqlite3_interrupt function to interrupt the
current operation of the database. It returns #t when the database is busy and #f otherwise.

ptr osi_get_sqlite_status(int operation, int resetp); function

The osi_get_sqlite_status function uses the sqlite3_status64 function with the given oper-
ation and reset flag to return #(current highwater) when successful and an error pair otherwise.

ptr osi_marshal_bindings(ptr bindings); function

The osi_marshal_bindings function allocates an internal structure and copies each Scheme datum
in bindings. The bindings argument may be a list or a vector. The result is a handle to the internal
structure or NULL if bindings is empty. An error pair is returned when the internal structure
cannot be allocated or the bindings cannot be mapped to SQLite data types.

37

ptr osi_get_bindings(uptr mbindings); function

The osi_get_bindings function allocates a vector containing a copy of each Scheme datum mar-
shaled into mbindings by osi_marshal_bindings. It is an error to call osi_get_bindings on
mbindings after calling osi_unmarshal_bindings on mbindings.

ptr osi_unmarshal_bindings(uptr mbindings); function

The osi_unmarshal_bindings function deallocates the internal structure allocated by osi_mar-
shal_bindings.

ptr osi_bulk_execute(ptr statements, ptr mbindings, ptr callback); function

The osi_bulk_execute function executes all the queries defined by statements and mbindings on
the database worker thread associated with the statements. The vector statements must contain
statement handles created by osi_prepare_statement. All statements must be prepared on the
same database. The vector mbindings must contain binding handles created by osi_marshal_-
bindings. It returns #t when the operation is started and an error pair otherwise.

When the bulk execute operation finishes, it enqueues the callback list (callback result), where
result is #t when successful and an error pair otherwise.

3.3.8 Message-Digest Functions

ptr osi_open_SHA1(); function

The osi_open_SHA1 function returns an error pair or a context for computing the SHA1 message
digest.

ptr osi_hash_data(uptr ctxt, ptr bv, size_t start_index, uint32_t size); function

The osi_hash_data function computes the SHA1 message digest incrementally on the size bytes
at the zero-based start_index of bytevector bv updating the context ctxt. It returns #t when
successful and an error pair otherwise.

ptr osi_get_SHA1(uptr ctxt); function

The osi_get_SHA1 function takes a ctxt that was created by osi_open_SHA1 and updated by
calling osi_hash_data on a set of buffers and returns as a bytevector the SHA1 message digest of
the buffers. If unsuccessful, it returns an error pair.

ptr osi_close_SHA1(uptr ctxt); function

The osi_close_SHA1 function frees a ctxt that was allocated by osi_open_SHA1.

38

Chapter 4

Erlang Embedding

4.1 Introduction

This chapter describes the design of the message-passing concurrency model. It provides a Scheme
embedding of a significant subset of the Erlang programming language [1, 2].1 Tuple and pattern
matching macros provide succinct ways of composing and decomposing data structures.

The basic unit of sequential computation is the process. Each process has independent state and
communicates with other processes by message passing. Because processes share no mutable state,
one process cannot corrupt the state of another process—a problem that plagues software using
shared-state concurrency. Concern: System procedures that mutate data can cause state corruption.
Mitigation: The code is inspected for use of these procedures.

An uncaught exception in one process does not affect any other process. A process can be monitored
for termination, and it can be linked to another process so that, when either process exits, the
other one receives an exit signal. Processes are implemented with one-shot continuations [4], and
the concurrent system is simulated by the single-threaded program using software timer interrupts.
The operating system interface (see Chapter 3) provides asynchronous input/output (I/O) so that
processes waiting for I/O do not stop other processes from executing.

For exceptions, we use Erlang’s approach of encoding the information in a machine-readable datum
rather than a formatted string. Doing so makes it possible to write code that matches particular
exceptions without having to parse strings, and the exception is human language independent.

The rest of this chapter is organized as follows. Section 4.2 introduces the main data structures,
Section 4.3 describes how the concurrency model works, and Section 4.4 gives the programming
interface.

4.2 Data Structures

q Queues are used in several key places: the inbox of messages for each process, the list of processes
ready to run, and the list of sleeping processes. A queue is a doubly-linked list with a sentinel value,

1Tuples, denoted by {e1, . . . , en} in Erlang, are implemented as vectors: #(e1 . . . en). Similarly records, defined
as syntactic sugar over tuples in Erlang, are implemented as syntactic sugar over vectors.

39

the queue’s identity. Both the sentinel value and the elements of the queue are instances of q, a
Scheme record type with mutable prev and next fields. This representation enables constant-time
insertion and deletion operations.

msg When a message is sent to a process, its contents are wrapped in an instance of msg, a
Scheme record type that extends q with an immutable contents field. This msg is inserted into
the process’s inbox and removed when the process receives it.

pcb A process is an instance of pcb, a Scheme record type that extends q with an immutable id
field, the process’s unique positive exact integer, an immutable create-time field, the process’s
create time from erlang:now, an immutable parameters field, the process’s weak eq-hashtable
mapping process parameters to values, and the following mutable fields:

• name: registered name or #f

• cont: one-shot continuation if live and not currently running or #f otherwise

• sic: system interrupt count

• winders: list of winders if live and not currently running or () otherwise

• exception-state: exception state if live and not currently running, exit reason if dead, or
#f if currently running

• inbox: queue of msg if live or #f if dead

• precedence: wake time if sleeping or 0 if ready to run

• flags: fixnum with bit 0 set when sleeping, bit 1 set when the process traps exits, bit 2 set
when the process is blocked for I/O, and bit 3 set when the process is pending a keyboard
interrupt

• links: list of linked processes

• monitors: list of monitors

• src: source location #(at char-offset filename) when available if waiting in a receive
macro, a string if blocked for I/O, or #f

mon A monitor is an instance of mon, a Scheme record type with two immutable fields, origin
and target, each of which is a process.

osi-port An osi-port is an instance of osi-port, a Scheme record type with an immutable name
field, an immutable create-time field, and a mutable handle field that wraps an operating system
interface port. The handle field is set to #f when the osi-port is closed.

path-watcher A path watcher is an instance of path-watcher, a Scheme record type with an
immutable path field, an immutable create-time field, and a mutable handle field. The handle
field is set to #f when the path watcher is closed.

40

listener A TCP listener is an instance of listener, a Scheme record type with immutable
address, port-number, and create-time fields and a mutable handle field. The handle field is
set to #f when the listener is closed.

4.3 Theory of Operation

The system uses a scheduler to execute one process at a time. Each process holds its own sys-
tem interrupt count (updated by enable-interrupts and disable-interrupts), list of winders
(maintained by dynamic-wind and the system primitive $current-winders), and exception state
(maintained by current-exception-state). The scheduler captures the one-shot continuation for
a process with an empty list of winders so that, when it invokes the continuation of another process,
it does not run any winders. Concern: Using a system procedure that relies on the global winders
list may lead to incorrect behavior. Mitigation: System procedures that rely on the global winders
list are called from only one process at a time using the gatekeeper described in Chapter 8. The
gatekeeper hooks the $cp0, $np-compile, pretty-print, and sc-expand system primitives.

Spawning a new process is not as simple as capturing a one-shot continuation and creating a pcb
record, because the continuation’s stack link [20] would be the continuation of the caller, and its list
of winders would be the caller’s. Thus, the scheduler remembers the current list of winders and then
sets it to the empty list before capturing a one-shot continuation. This return continuation is stored
in a mutable variable so that it is not closed over by the new process. Next, a full continuation is
captured to create the initial exception state that will terminate the new process when an uncaught
exception is raised. So that this full continuation does not refer to the caller’s continuation, the
current stack link is set to the null continuation before capturing it. After capturing the full
continuation, a one-shot continuation for the new process is captured and returned to the caller via
the return continuation.

Each process runs until it waits in a receive macro or wait-for-io procedure, is preempted by
the timer-interrupt-handler, or exits. The operating system interface (see Chapter 3) provides
asynchronous I/O operations so that the scheduler can execute other processes while the system
is performing I/O. The timer interrupt handler runs every 1000 procedure calls.2 The scheduler
uses osi_set_tick and osi_is_tick_over to determine when the time quantum for a process has
elapsed.

When process p exits with reason r , a message matching ‘(DOWN m p r) is sent to each of its
monitor m’s origin processes. A message matching ‘(EXIT p r) is sent to each linked process
that traps exits. If r is not normal, each linked process that does not trap exits is killed with
reason r .

A process can be registered with a global name, a symbol. This name can be used instead of the
process record itself to send it messages. A global registrar maintains an eq-hashtable mapping
names to processes. The reverse mapping is maintained in the pcb record through the name field.

There are two system processes: the event-loop and the finalizer .

The event-loop process calls osi_get_callbacks to retrieve callback lists from the operating system
interface. It executes each callback with interrupts disabled. Event-loop callbacks are designed to
execute quickly without failing or causing new completion packets to be enqueued. Typical callbacks

21000 was chosen because Chez Scheme performs its internal interrupt checks every 1000 ticks.

41

register objects that wrap operating system interface handles with a guardian and send messages
to a process. If the event-loop process exits with reason r, the system logs the event #(event-
loop-process-terminated r) with console-event-handler and calls osi_exit with exit code
80.

The scheduler maintains the run queue, a queue of ready-to-run processes, and the sleep queue, a
queue of sleeping processes. Both are ordered by increasing precedence and preserve the order of
insertion for processes with the same precedence. For the run queue, each process has precedence
0 in order to implement round-robin scheduling. For the sleep queue, each process uses its wake
time as the precedence.

When the run queue is empty, the event-loop process calls osi_get_callbacks with a non-zero
timeout based on the first entry in the sleep queue to avoid busy waiting. When the event-loop
process finishes processing all completion packets, it places itself at the end of the run queue.

Concern: Some process may starve another process. Mitigation: The run queue is managed with
round-robin scheduling to prevent starvation. The event-loop process does not starve other pro-
cesses because it drains the completion queue without causing new completion packets to be en-
queued.

The finalizer process runs the finalizers registered via add-finalizer. These finalizers typically
close operating system interface handles to objects that are no longer accessible. Concern: Ill-
behaved finalizers may cause memory and handle leaks. Mitigation: Finalizers are designed to
execute quickly without failing. Typical finalizers guard against errors when closing handles. If the
finalizer process exits with reason r, the system logs the event #(finalizer-process-terminated
r) with console-event-handler and calls osi_exit with exit code 80.

Once the finalizer process runs all the finalizers, it waits until another garbage collection has
occurred before running again. The system hooks the collect procedure so that it sends a wake-
up message to the finalizer process every time a garbage collection occurs. When the finalizer
receives the wake-up message, it pumps all other wake-up messages from its inbox, since there may
have been more than one garbage collection since it last ran.

Asynchronous I/O operations for COM ports, named pipes, external operating system processes,
files, console input, and TCP connections are implemented with custom binary ports so that they
have the same interface as the system I/O procedures. The system I/O procedures are not used
because they perform synchronous I/O. The default custom port buffer size is set to 1024 with
custom-port-buffer-size.3 When compiled with Chez Scheme versions 9.6.2 and later, Swish
uses file-buffer-size as the buffer size for custom file ports. The custom binary port read and
write procedures call osi_read_port and osi_write_port with callbacks that send a message to
the calling process, which waits until it receives the message.

Concern: Using a port from more than one process at the same time may cause errors including
buffer corruption. Mitigation: The code is inspected for concurrent use of ports. Port visibility is
typically limited to a single process.

For two-way communication ports, we use two custom ports: one exclusively for input, and one
exclusively for output. We do not use custom input/output ports for two reasons. First, textual
input/output ports created with transcoded-port are not safe to use from two concurrent processes
because one transcoding buffer is used for both reading and writing. Second, the input side of a

31024 was chosen because prior versions of Chez Scheme use 1024 for the buffer size of buffered transcoded ports.

42

port is commonly used only by a reader process, and the output side of a port is commonly used
only by a writer process. Keeping the input and output sides separate prevents concurrent use.
The underlying handle is closed when the output port is closed.

Concern: Failing to close a handle from the operating system interface that is no longer used causes
resource leaks. Mitigation: An osi-port guardian created by make-foreign-handle-guardian with
type name osi-ports is used to identify and close inaccessible osi-ports. A path-watcher guardian
created by make-foreign-handle-guardian with type name path-watchers is used to identify and
close inaccessible path watchers. A listener guardian created by make-foreign-handle-guardian
with type name tcp-listeners is used to identify and close inaccessible TCP listeners. In all
cases, interrupts are disabled around code that wraps handles and registers objects with guardians
in order to prevent the current process from being killed during this critical time.

4.4 Programming Interface

4.4.1 Process Creation

(spawn thunk) procedure
returns: a process

The spawn procedure creates and returns a new process that executes thunk, a procedure of no
arguments. The new process starts with name = #f, sic = 0 (interrupts enabled), winders = (),
an exception-state that terminates the process on an unhandled exception, an empty inbox,
precedence = 0, flags = 0 (the process is not sleeping and does not trap exits), links = (),
monitors = (), and src = #f.

(spawn&link thunk) procedure
returns: a process

Like spawn, the spawn&link procedure creates and returns a new process that executes thunk. In
addition, it links the new process to the calling process.

4.4.2 Process Registration

(get-registered) procedure
returns: a list of registered process names

The get-registered procedure returns a list of currently registered process names from the reg-
istrar.

(register name process) procedure
returns: #t

The register procedure adds name → process to the registrar and sets process.name = name.
When a registered process exits, its registration is removed. If name is not a symbol, exception
#(bad-arg register name) is raised. If process is not a process, exception #(bad-arg register
process) is raised. If process is dead, exception #(process-dead process) is raised. If process is

43

already registered to name n, exception #(process-already-registered n) is raised. If name is
already registered to process p, exception #(name-already-registered p) is raised.

(unregister name) procedure
returns: #t

The unregister procedure removes name → process from the registrar and sets process.name =
#f. If name is not registered, exception #(bad-arg unregister name) is raised.

(whereis name) procedure
returns: a process | #f

The whereis procedure returns the process associated with name or #f if name is not registered.
If name is not a symbol, exception #(bad-arg whereis name) is raised.

4.4.3 Process Termination, Links, and Monitors

(catch e1 e2 . . .) syntax
expands to: ($trap (lambda () e1 e2 . . .) ->EXIT)

The catch macro evaluates expressions e1 e2 . . . in a dynamic context that traps exceptions. If
no exception is raised, the return value is the value of the last expression. If exception reason is
raised, #(EXIT reason) is returned.

(try e1 e2 . . .) syntax
expands to: ($trap (lambda () e1 e2 . . .) ->fault-condition)

The try macro evaluates expressions e1 e2 . . . in a dynamic context that traps exceptions. If no
exception is raised, the return value is the value of the last expression. If exception reason is raised,
the return value is a fault condition matching the extended match pattern ‘(catch reason [e]).

‘(catch r [e]) match-extension
matches: exceptions trapped by try or catch

The extended match pattern ‘(catch r [e]) matches exceptions trapped by try. For compatibility
with older code, this pattern also matches exceptions trapped by catch. The r pattern is matched
against the exit reason in the trapped exception. The optional e pattern is typically a ,variable
pattern that binds variable for use as an argument to throw or raise. If the trapped exception is a
fault condition generated by throw, make-fault, or make-fault/no-cc, then e is matched against
the fault condition, which may contain additional debugging context. Otherwise, e is matched
against the exit reason.

(throw r [inner]) procedure
returns: does not return

The throw procedure raises a fault condition containing reason r , an optional inner exception inner ,
and the current continuation, which may provide useful debugging context. The exception raised
may be trapped by try and matched using the extended match pattern ‘(catch r [e]).

44

(make-fault r [inner]) procedure
returns: a fault condition

The make-fault procedure returns a fault condition containing reason r , an optional inner excep-
tion inner , and the current continuation, which may provide useful debugging context. The return
value matches the extended match pattern ‘(catch r [e]).

(make-fault/no-cc r [inner]) procedure
returns: a fault condition

The make-fault/no-cc procedure returns a fault condition containing reason r , and an optional
inner exception inner , but omits the current continuation. The return value matches the extended
match pattern ‘(catch r [e]).

(demonitor monitor) procedure
returns: #t

The demonitor procedure removes a monitor created by the calling process (self) from self .monitors
and monitor .target.monitors if present. If monitor is not a monitor with origin = self , exception
#(bad-arg demonitor monitor) is raised.

(demonitor&flush monitor) procedure
returns: #t

The demonitor&flush procedure provides a convenient way to demonitor and flush any remaining
DOWN message from the calling process’s inbox. It performs the following operations:
(demonitor monitor)
(receive (until 0 #t)

[`(DOWN ,@monitor ,_ ,_) #t])

(kill process reason) procedure
returns: #t

The kill procedure is used to terminate a process.

1. If process is not a process, exception #(bad-arg kill process) is raised.

2. If process has already exited, nothing happens.

3. If reason is kill, process is terminated with reason killed, even if it traps exits.

4. If process traps exits, a message matching ‘(EXIT self reason) is sent to process, where self
is the calling process.

5. If process does not trap exits and reason is normal, nothing happens.

6. Otherwise, process is terminated with reason.

45

(link process) procedure
returns: #t

The link procedure creates a bi-directional link between the calling process (self) and process. No
more than one link can exist between two processes, but it is not an error to call link more than
once on the same two processes.

1. If process is not a process, exception #(bad-arg link process) is raised.

2. If process is self , nothing happens.

3. If process has not exited, then if the two processes are already linked, nothing happens;
otherwise, self is added to process.links, and process is added to self .links.

4. Otherwise, process has exited with reason r = process.exception-state.

(a) If self traps exits, a message matching ‘(EXIT process r) is sent to self .
(b) If self does not trap exits and reason is normal, nothing happens.
(c) Otherwise, self is terminated with reason r.

(monitor process) procedure
returns: a monitor

The monitor procedure creates and returns a new monitor m with origin = the calling process
(self) and target = process. Unlike link, monitor can create more than one connection between
the same processes. It adds m to self .monitors and process.monitors. When process exits or has
already exited with reason r, a message matching ‘(DOWN m process r) is sent to self . If process
is not a process, exception #(bad-arg monitor process) is raised.

(monitor? x) procedure
returns: a boolean

The monitor? procedure determines whether or not the datum x is a monitor.

(unlink process) procedure
returns: #t

The unlink procedure removes the bi-directional link if present between the calling process (self)
and process by removing self from process.links and process from self .links. If process is not a
process, exception #(bad-arg unlink process) is raised.

‘(EXIT p r [e]) match-extension
matches: exit messages generated by kill or link

The extended match pattern ‘(EXIT p r [e]) matches exit messages generated by kill or link.
The pattern p is matched against the process in the message. If the reason in the message is
an exception trapped by try or catch, or a fault condition generated by make-fault or make-
fault/no-cc, then the patterns r and e are matched against reason as if by the extended match
pattern ‘(catch r [e]). Otherwise, both r and e are matched against reason directly.

46

pattern matches
symbol itself
number itself
boolean itself
character itself
string itself
bytevector itself
() itself
(p1 . p2) a pair whose car matches p1 and cdr matches p2
#(p1 . . . pn) a vector of n elements whose elements match p1 . . . pn

#!eof a datum satisfying eof-object?
,_ any datum
,variable any datum and binds a fresh variable to it
,@variable any datum equal? to the bound variable
,(variable <= pattern) any datum that matches pattern and binds a fresh variable to it
‘(type {,field | ,@field | [field pattern]} . . .)

an instance of the tuple or native record type, each field of which
is bound to fresh variable field or matches the corresponding
pattern; ,@field is treated as [field ,@field]; type must be known
at expand time

‘(ext spec . . .) as specified by define-match-extension for ext

Figure 4.1: Pattern Grammar

‘(DOWN m p r [e]) match-extension
matches: down messages generated by monitor

The extended match pattern ‘(DOWN m p r [e]) matches down messages generated by monitor.
The pattern m is matched against the monitor in the message. The pattern p is matched against
the monitored process in the message. If the reason in the message is an exception trapped by try
or catch, or a fault condition generated by make-fault or make-fault/no-cc, then the patterns r
and e are matched against reason as if by the extended match pattern ‘(catch r [e]). Otherwise,
both r and e are matched against reason directly.

4.4.4 Messages and Pattern Matching

The pattern matching syntax of Figure 4.1 provides a concise and expressive way to match data
structures and bind variables to parts. The receive, match, match-define, and match-let*
macros use this pattern language. The implementation makes a structurally recursive pass over the
pattern to check for duplicate pattern variables as it emits code that matches the input against the
pattern left to right.

(match exp
(<pattern> [(guard g)] b1 b2 . . .)
. . .)

syntax

returns: the value of the last expression b1 b2 . . . for the matched pattern

The match macro evaluates exp once and tests its value v against each pattern and optional guard.

47

Each guard expression g is evaluated in the scope of its associated pattern variables. When g returns
#f, v fails to match that clause. For the first pattern and guard that matches v, the expressions b1
b2 . . . are evaluated in the scope of its pattern variables. If v fails to match all patterns, exception
#(bad-match v src) is raised, where src is the source location of the match clause if available.

See Figure 4.1 for the pattern grammar.

(match-define <pattern> exp) syntax
expands to: see below

The match-define macro evaluates exp and matches the resulting input against the pattern.
Pattern-variable bindings are established via define and inhabit the same scope in which the
match-define form appears. The match-define macro does not support guard expressions. If the
pattern fails to match, exception #(bad-match v src) is raised, where v is the datum that failed
to match the pattern at source location src if available.

See Figure 4.1 for the pattern grammar.

(match-let* ([<pattern> [(guard g)] exp]
. . .)

b1 b2 . . .)

syntax

returns: the value of the last expression b1 b2 . . .

The match-let* macro evaluates each exp in the order specified and matches its value against its
pattern and guard. The pattern variables of each clause extend the scope of its guard expression g
and all subsequent pattern clauses and body expressions b1 b2 The match-let* macro returns
the value of the last body expression. If any pattern fails to match or any g returns #f, exception
#(bad-match v src) is raised, where v is the datum that failed to match the pattern or guard at
source location src if available.

See Figure 4.1 for the pattern grammar.

(receive
[(after timeout t1 t2 . . .) | (until time t1 t2 . . .)]
(<pattern> [(guard g)] b1 b2 . . .)
. . .)

syntax

returns: the value of the last evaluated expression

The receive macro examines each message m in the calling process’s inbox by testing it against
each pattern and optional guard. Each guard expression g is evaluated in the scope of its associated
pattern variables. When g returns #f, m fails to match that clause. For the first pattern and guard
that matches m, m is removed from inbox, and the expressions b1 b2 . . . are evaluated in the
scope of its pattern variables. If m fails to match all patterns, the examination continues with the
next message in inbox. When all messages have been examined, the calling process waits with its
src field set to the source location of the receive macro if available. The process awakens when a
new message or the time specified by the optional after or until clause arrives. If a new message
arrives before the timeout, the examination process continues as before. Otherwise, the timeout
expressions t1 t2 . . . are evaluated.

The optional after clause specifies a timeout in milliseconds from the time at which control enters
the receive macro. Similarly, the optional until clause specifies a clock time in milliseconds as

48

measured by erlang:now. In addition, timeout and time can be infinity to indicate no timeout.
If t = timeout or time is not a non-negative exact integer or infinity, exception #(timeout-value
t src) is returned, where src is the source location of the receive macro if available.

See Figure 4.1 for the pattern grammar.

(define-match-extension ext handle-object [handle-field]) syntax
expands to: see below

The define-match-extension macro attaches a property to the identifier ext, via define-property,
so that the expander calls handle-object to translate ‘(ext spec . . .) patterns when generating code
for match, match-define, match-let*, or receive. The handle-object procedure takes two argu-
ments: v, an identifier that will be bound in the generated code to the value to be matched, and
pattern, a syntax object for an expression of the form ‘(ext spec . . .). The handle-object proce-
dure can return #f to report an invalid pattern. Otherwise, handle-object should translate the given
pattern to a list of one or more instructions in the following simple language:

(bind v e) binds v to the value of e via let or define
(guard g) rejects the match if g evaluates to #f
(sub-match e pattern) matches the value of e against pattern
(handle-fields input field-spec . . .) invokes handle-field to translate each field-spec

The generated code evaluates the instructions in the order they are returned. For example, a guard
expression may refer to a binding established by a bind earlier in the list of instructions. The sub-
match and handle-fields instructions are processed at expand time and may appear only as the
final instruction in the list returned by handle-object.

The (handle-fields input field-spec . . .) instruction parses each field-spec from left to right and
calls handle-field with five arguments: the input from the instruction, the field identified, the var
that should be bound to the value of field, a list of options appearing in the field-spec, and the
original pattern context. The following table shows how each field-spec is parsed into arguments
for handle-field:

field-spec field var options notes
,field field field () field must be an identifier
,@field field unique () field must be an identifier
[field pattern option . . .] field unique (option . . .) unique is matched against pattern

The handle-field procedure can return #f to report an invalid field. Otherwise, handle-field should
return a list of bind or guard instructions that bind var and perform any checks needed to confirm
a match. The resulting instructions are evaluated in the order they are returned.

Where temporaries are introduced in the generated output, the handle-object and handle-field
procedures should use with-temporaries to avoid unintended variable capture.

(send destination message) procedure
returns: unspecified

The send procedure sends message to a process or registered name, destination. If destination is
not a process or registered name, exception #(bad-arg send destination) is raised. If destination
has exited, nothing else happens. Otherwise, message is added to the end of destination.inbox. If
destination is sleeping, it is awakened. If destination is not blocked for I/O and not on the run

49

queue, it is placed on the run queue with precedence 0.

4.4.5 Process Properties

(pps [op]) procedure
returns: unspecified

The pps procedure prints information about all processes to textual output port op, which defaults
to the current output port. If op is not an output port, exception #(bad-arg pps op) is raised.

(process? x) procedure
returns: a boolean

The process? procedure determines whether or not the datum x is a process.

(process-id [process]) procedure
returns: the process id

The process-id procedure returns process.id, where process defaults to self. If process is not a
process, exception #(bad-arg process-id process) is raised.

(global-process-id process) procedure
returns: a string; see below

The global-process-id procedure returns a string of the form "session-id:process-id". The
process-id is the process-id of process. If the log-db gen-server has been started, then session-id
is an integer session identifier that is unique in that database instance. Otherwise, session-id is
omitted. If process is not a process, exception #(bad-arg global-process-id process) is raised.

(process-name [process]) procedure
returns: the process name or #f

The process-name procedure returns process.name, where process defaults to self. If process is
not a process, exception #(bad-arg process-name process) is raised.

(process-parent) procedure
returns: the parent process or #f

The process-parent procedure returns the process which spawned the current process or #f if the
parent process has been garbage collected.

process-trap-exit parameter
value: boolean or a procedure

The process-trap-exit parameter specifies whether or not the calling process traps exit signals
as messages. Processes do not trap exit signals by default; therefore, processes start with this
parameter set to #f. To trap exit signals as messages, a process sets this parameter to #t or a
procedure. A gen-server can set the parameter to #t and handle exit messages via its handle-info
callback; see Section 6.5 for details. Other processes can handle these messages via receive.

50

A process may set the process-trap-exit parameter to a handler procedure that accepts one
argument, msg. When the scheduler resumes that process, it checks whether kill or link has
delivered an exit signal as a message. If so, it retrieves the first exit message, invokes handler
on that message, and repeats this until it has consumed the available exit messages.4 A handler
procedure may be useful, for example, to perform some cleanup in case an exit signal arrives while
a process is blocked awaiting a reply in gen-server:call.

(raise-on-exit msg) procedure
returns: see below

The raise-on-exit procedure expects an exit message msg matching ‘(EXIT pid reason). If
reason is normal, raise-on-exit returns an unspecified value. Otherwise, it raises an exception
involving reason.

self syntax
returns: the current process

The self macro uses identifier-syntax to expand into code that retrieves the global self vari-
able’s top-level value. The global variable cannot be used directly because library bindings are
immutable.

(with-interrupts-disabled-for-io body1 body2 . . .) syntax
expands to: see below

The with-interrupts-disabled-for-io macro is like with-interrupts-disabled except that,
just before returning, it checks for trapped exit messages. The system handles trapped exit messages
at this time only if process-trap-exit is set to a procedure. This macro is intended for use in
code that calls wait-for-io and complete-io with interrupts disabled.

4.4.6 Miscellaneous

(add-finalizer finalizer) procedure
returns: unspecified

The add-finalizer procedure adds finalizer to the global list of finalizers. finalizer is a procedure
of no arguments that runs in the finalizer process after garbage collections. If finalizer is not a
procedure, exception #(bad-arg add-finalizer finalizer) is raised.

(make-foreign-handle-guardian type-name get-handle set-handle!
get-create-time close-handle print)

procedure

returns: a procedure that expects r and handle

The make-foreign-handle-guardian procedure assists in managing handles returned by foreign
procedures. A common pattern is to wrap each foreign handle in a record, register the record
with a guardian, and add a finalizer that closes the handles of records the guardian identifies as
inaccessible. The make-foreign-handle-guardian procedure supports this pattern by creating a

4An exit message delivered via send will not trigger handler on its own, but handler may consume that message
if the scheduler invokes handler .

51

guardian and installing a suitable finalizer via add-finalizer. It also adds type-name to the set of
foreign types recognized by count-foreign-handles, foreign-handle-count, foreign-handle-
print, and print-foreign-handles to help monitor foreign handles that are still open.

The type-name must be a symbol; the remaining arguments must be procedures. It is an error
if type-name has already been registered. The get-handle and get-create-time procedures should
expect a single argument r ; get-create-time must return an integer. The set-handle! procedure
should expect r and handle and store handle in r , where it can be retrieved by get-handle.

The close-handle procedure runs in the finalizer process. It should take r and disable interrupts
before checking whether (get-handle r) is already #f, since the guardian may return inaccessible
objects that are already closed. If not, it should close the foreign handle and call the foreign-handle
guardian with r and #f to clear the association of r with handle.

The print procedure should expect a textual output port op, r , and handle and print diagnostic
information about the handle to op followed by a newline. See the output of print-foreign-
handles for examples.

The make-foreign-handle-guardian procedure returns a procedure that expects two arguments:
r and a handle that is either an integer or #f. Other code should not call set-handle! but should
instead call the resulting procedure with interrupts disabled. If handle is #f, this procedure calls
(set-handle! r #f) and removes r from the weak eq-hashtable consulted by foreign-handle-
count, etc. If handle is not #f, then the procedure checks whether (get-handle r) is #f. If so, it
calls (set-handle! r handle). Otherwise, it registers r with the guardian. In either case, it adds r
to the weak eq-hashtable consulted by foreign-handle-count, etc. To ensure that r is registered
with the guardian just once, r should already contain handle the first time the procedure is called
with r and a handle that is not #f.

(count-foreign-handles obj report-count) procedure
returns: obj

The count-foreign-handles procedure takes an arbitrary obj and a procedure report-count that
takes obj, a symbol type identifying a source of foreign handles, and count, the number of open
handles of that type. The count-foreign-handles procedure calls report-count once for each
foreign-handle type registered with make-foreign-handle-guardian, in an unspecified order.

(foreign-handle-count type-name) procedure
returns: a procedure

The foreign-handle-count procedure takes a symbol type-name that must already have been
registered with make-foreign-handle-guardian and returns a procedure of no arguments that
returns the number of open foreign handles of that type.

(foreign-handle-print type-name) procedure
returns: a procedure

The foreign-handle-print procedure takes a symbol type-name that must already have been
registered with make-foreign-handle-guardian and returns a procedure that prints information
about open handles of that type. The procedure returned uses the print and get-create-time proce-
dures registered with make-foreign-handle-guardian. The procedure takes an optional textual

52

output port op, which defaults to the current output port, and calls print for each open handle
of the designated type in increasing order of the creation time from get-create-time and then by
increasing handle.

(print-foreign-handles [op]) procedure
returns: unspecified

The print-foreign-handles procedure prints information about open foreign handles to textual
output port op, which defaults to the current output port. The print-foreign-handles procedure
calls the procedure returned by (foreign-handle-print type-name) for each foreign-handle type
registered with make-foreign-handle-guardian.

(arg-check who [arg pred . . .] . . .) syntax
expands to:
(let ([who who])

(let ([arg arg])
(unless (and (pred arg) . . .)

(profile-me-as arg-check)
(bad-arg who arg)))

. . .
(void))

The arg-check macro raises a bad-arg exception if any arg fails any pred specified for that arg.
Within coverage reports, profile counts on the arg-check keyword indicate the number of bad-arg
cases encountered.

(procedure/arity? mask [obj]) procedure
returns: see below

If both arguments are supplied, procedure/arity? returns true if obj is a procedure that supports
all of the argument counts specified by mask. If only the mask is supplied, then procedure/arity?
returns a procedure (lambda (p) (procedure/arity? mask p)) suitable for use with andmap or
arg-check, for example. In either case mask must be an exact integer bitmask of the form returned
by procedure-arity-mask.

(bad-arg who arg) procedure
returns: never

The bad-arg procedure raises exception #(bad-arg who arg).

(complete-io process) procedure
returns: unspecified

The complete-io procedure is used in callback functions to unblock a process from a call to wait-
for-io. If process is not a process, exception #(bad-arg complete-io process) is raised.

(console-event-handler event) procedure
returns: unspecified

53

The console-event-handler procedure prints an event to the console error port. It is used when
the event manager is not available. It disables interrupts so that it can be called from multiple
processes safely. The output is designed to be machine readable. The output looks like this:

Date: Fri Aug 06 11:54:59 2010
Timestamp: 1281110099144
Event: event

The date is the local time from the date-and-time procedure, the timestamp is the clock time
from erlang:now, and event is printed as with write.

(dbg)
(dbg id)

procedure

returns: see below

The dbg procedure is used to debug processes that exit with a continuation condition.

(dbg) prints to the current output port the process id and exception message for each process that
exited with a continuation condition.

(dbg id) enters the interactive debugger using the exception state of process id. If process id does
not exist or did not exit with a continuation condition, the following message is printed: “Nothing
to debug.”

(ps-fold-left id<? base f) procedure
returns: see below

The ps-fold-left procedure folds over the process table ordered by id<? on process-id and
calls f with the accumulator value (initially base) and the process for each entry in the table.

(with-process-details p f) procedure
returns: see below

The with-process-details procedure takes a process p and returns the value obtained by calling
the procedure f with four values: the process id, the process name, the value of erlang:now
when the process was created, and a representation of the process state that may be passed to
print-process-state.

(print-process-state state op) procedure
returns: unspecified

The print-process-state procedure takes a state from with-process-details and prints a
description of the process state to the textual output port op in the format used by pps.

(dump-stack [op])
(dump-stack k op max-depth)

procedure

returns: unspecified

The dump-stack procedure calls walk-stack to print information about the stack to textual output
port op, which defaults to the current output port.

54

k is a continuation, and max-depth is either the symbol default or a positive fixnum. See walk-
stack for details on the max-depth argument.

(dump-stack op) calls (call/cc (lambda (k) (dump-stack k op ’default))).

(limit-stack e0 e1 . . .) syntax
expands to: ($limit-stack (lambda () e0 e1 . . .) source)

The limit-stack macro adds a stack frame that may be recognized by limit-stack?. By default,
walk-stack avoids descending below such frames. The limit-stack macro evaluates expressions
e0 e1 . . . from left to right and returns the values of the last expression.

(limit-stack? x) procedure
returns: see below

The limit-stack? procedure returns true if x is a continuation whose top frame is a limit-stack
frame. Otherwise it returns #f.

(walk-stack k base handle-frame combine [who max-depth truncated]) procedure
returns: see below

The walk-stack procedure walks the stack of continuation k by calling the handle-frame and
combine procedures for each stack frame until it reaches the base of the stack or a limit-stack
frame, or depth reaches the optional max-depth, or the next argument to combine is not called.

The handle-frame procedure is called with four arguments:

description a string describing the stack frame, e.g., "#<continuation in g>"
source a source object identifying the return point or #f
proc-source a source object identifying the procedure containing the return point or #f
vars a list associating live free variables by name (or index) with their values

If max-depth is omitted or is the symbol default, then walk-stack uses the value of walk-stack-
max-depth as max-depth and stops if recognizes a limit-stack frame. If max-depth is specified
explicitly, then walk-stack does not stop at limit-stack frames. If walk-stack reaches a depth of
max-depth, it calls the optional truncated procedure with base and depth. Otherwise, walk-stack
calls the combine procedure with four arguments:

frame the value returned by handle-frame for the current frame
base the accumulator
depth the zero-based depth of the current frame
next a procedure that takes base and continues with the next frame

If walk-stack receives an invalid argument val, it calls (bad-arg who val) with the symbol walk-
stack as the default value for the optional who argument. The default truncated procedure simply
returns the value of base passed in.

walk-stack-max-depth parameter
returns: a nonnegative fixnum

The walk-stack-max-depth parameter specifies the default maximum depth to which walk-stack
descends when the optional max-depth argument is omitted or is the symbol default.

55

(exit-reason->stacks x) procedure
returns: a list of continuations

The exit-reason->stacks procedure takes a Swish condition x, as created by throw or trapped
by try, and returns a list of continuations recorded in x. The continuations are listed innermost
to outermost.

(erlang:now) procedure
returns: the current clock time in milliseconds

The erlang:now procedure calls osi_get_time to return the number of milliseconds in UTC since
the UNIX epoch January 1, 1970.

(make-process-parameter initial [filter]) procedure
returns: a process-parameter procedure

The make-process-parameter procedure creates a parameter procedure p that provides per-
process, mutable storage via the parameters weak eq-hashtable of each process. Calling p with no
arguments returns the current value of the parameter for the calling process, and calling p with
one argument sets the value of the parameter for the calling process. The filter , if present, is a
procedure of one argument that is applied to the initial and all subsequent values. If filter is not
a procedure, exception #(bad-arg make-process-parameter filter) is raised.

The following system parameters are not process safe and have been redefined to use make-process-
parameter: command-line, command-line-arguments, custom-port-buffer-size, exit-handler,
keyboard-interrupt-handler. pretty-initial-indent, pretty-line-length, pretty-maximum-
lines, pretty-one-line-limit, pretty-standard-indent, print-brackets, print-char-name,
print-gensym, print-graph, print-length, print-level, print-precision, print-radix, print-
record, print-unicode, print-vector-length, reset-handler, and waiter-prompt-and-read,
waiter-prompt-string.

inherited-parameters parameter
value: a list of process-parameter procedures

The inherited-parameters parameter contains a list of procedures representing process param-
eters whose values are propagated into spawned processes. Before creating a process, spawn and
spawn&link record the current values of the inherited-parameters and install these values in the
new process just before it calls the thunk. For efficiency, spawn and spawn&link do not re-apply a
parameter’s filter when installing these values in the new process. These values are already filtered,
since the filter, if any, is called when a parameter is set.

(make-inherited-parameter initial [filter]) procedure
returns: a process-parameter procedure

The make-inherited-parameter procedure calls make-process-parameter to create a per-process
parameter procedure p and adds p to the inherited-parameters list before returning p.

(keyboard-interrupt process) procedure
returns: unspecified

56

The keyboard-interrupt procedure causes process to call ((keyboard-interrupt-handler)) as
soon as possible.

(on-exit finally b1 b2 . . .) syntax
expands to:
(dynamic-wind

void
(lambda () b1 b2 . . .)
(lambda () finally))

The on-exit macro executes the body expressions b1 b2 . . . in a dynamic context that executes
the finally expression whenever control leaves the body.

(profile-me) procedure
returns: unspecified

The profile-me procedure does nothing but provide a place-holder for the system profiler to
count the call site. When profiling is turned off, (profile-me) expands to (void), and the system
optimizer eliminates it.

(profile-me-as form) syntax
returns: unspecified

The profile-me-as macro does nothing but provide a place-holder for the system profiler to
count the call site. If source information is present on form, the profile count for this call site is
attributed to that form. When profiling is turned off or when source information is not present on
form, profile-me-as expands to (void), and the system optimizer eliminates it.

(wait-for-io name) procedure
returns: unspecified

The wait-for-io procedure blocks the current process for I/O. The name string indicates the
target of the I/O operation. To unblock the process, call complete-io from a callback function.

windows? syntax
expands to: a boolean

The windows? macro expands to #t if the host is running Microsoft Windows and #f if not.

4.4.7 Tuples

For users of the concurrency model, a tuple is a container of named, immutable fields implemented
as a vector whose first element is the tuple name and remaining elements are the fields. Each tuple
definition is a macro that provides all tuple operations using field names only, not field indices. The
macro makes it easy to copy a tuple without having to specify the fields that don’t change. We
decided not to use the Scheme record facility because it does not provide name-based constructors,
copy operators, or convenient serialization.

57

(define-tuple name field . . .) syntax
expands to: a macro definition of name described below

The define-tuple macro defines a macro for creating, copying, identifying, and accessing tuple
type name. name and field . . . must be identifiers. No two field names can be the same. The
following field names are reserved: make, copy, copy*, and is?.

(name make [field value] . . .) syntax
returns: a new instance of tuple type name with field = value . . .

The make form creates a new instance of the tuple type name. field bindings may appear in any
order. All fields from the tuple definition must be specified.

(name field instance) syntax
returns: instance.field

The field accessor form retrieves the value of the specified field of instance. If r = instance is not a
tuple of type name, exception #(bad-tuple name r src) is raised, where src is the source location
of the field accessor form if available.

(name field) syntax
returns: a procedure that, given instance, returns instance.field

The (name field) form expands to (lambda (instance) (name field instance)).

(name open instance [prefix] (field . . .)) syntax
expands to: definitions for field . . . or prefixfield . . . described below

The open form defines identifier syntax for each specified field so that a reference to field expands
to (name field r) where r is the value of instance. If r is not a tuple of type name, exception
#(bad-tuple name r src) is raised, where src is the source location of the open form if avalable.
The open form is equivalent to the following, except that it checks the tuple type only once:
(begin

(define instance instance)
(define-syntax field (identifier-syntax (name field instance)))
. . .)

The open form introduces definitions only for fields listed explicitly in (field . . .). If the optional
prefix identifier is supplied, open produces a definition for prefixfield rather than field for each field
specified.

(name copy instance [field value] . . .) syntax
returns: a new instance of tuple type name with field = value . . . and remaining fields copied
from instance

The copy form creates a copy of instance except that each specified field is set to the associated
value. If r = instance is not a tuple of type name, exception #(bad-tuple name r src) is raised,
where src is the source location of the copy form if avalable. field bindings may appear in any
order.

58

(name copy* instance [field value] . . .) syntax
returns: a new instance of tuple type name with field = value . . . and remaining fields copied
from instance

The copy* form is like copy except that, within the value expressions, each specified field is bound
to an identifier macro that returns the value of instance.field. If r = instance is not a tuple of
type name, exception #(bad-tuple name r src) is raised, where src is the source location of the
copy* form if avalable. The copy* form is equivalent to the following, except that it checks the
tuple type only once:
(let ([instance instance])

(name open instance (field . . .))
(name copy instance [field value] . . .))

(name is? x) syntax
returns: a boolean

The is? form determines whether or not the datum x is an instance of tuple type name.

(name is?) syntax
expands to: a predicate that returns true if and only if its argument is an instance of tuple type
name

The (name is?) form expands to (lambda (x) (name is? x)).

4.4.8 I/O

(binary->utf8 bp) procedure
returns: a transcoded textual port wrapping bp

The binary->utf8 procedure takes a binary port bp and returns a textual port wrapping bp using
transcoded-port and (make-utf8-transcoder). The original port bp is marked closed so that it
cannot be used except through the associated textual port.

(close-osi-port port) procedure
returns: unspecified

The close-osi-port procedure closes osi-port port using osi_close_port. If port has already
been closed, close-osi-port does nothing.

(close-path-watcher watcher) procedure
returns: unspecified

The close-path-watcher procedure uses osi_close_path_watcher to close the given path watcher .
If watcher is not a path watcher, exception #(bad-arg close-path-watcher watcher) is raised.
If watcher has already been closed, close-path-watcher does nothing.

(close-tcp-listener listener) procedure
returns: unspecified

59

The close-tcp-listener procedure closes a TCP listener using osi_close_tcp_listener. If
listener is not a TCP listener, exception #(bad-arg close-tcp-listener listener) is raised. If
listener has already been closed, close-tcp-listener does nothing.

(connect-tcp hostname port-spec) procedure
returns: two values: a binary input port and a binary output port

The connect-tcp procedure calls osi_connect_tcp and blocks while the TCP connection to host-
name on port-spec is established or fails to be established. The port-spec may be a port number
or a string service name such as “http”. The procedure returns a custom binary input port that
reads from the new connection and a custom binary output port that writes to the new connection.
These ports support port-position but not set-port-position!, and the underlying osi-ports
are registered with the osi-port guardian.

If osi_connect_tcp fails with error pair (who . errno), exception #(io-error "[hostname]:port-
spec" who errno) is raised. If hostname is not a string, exception #(bad-arg connect-tcp host-
name) is raised. If port-spec is not a fixnum between 0 and 65535 inclusive or a string, exception
#(bad-arg connect-tcp port-spec) is raised.

(directory? path) procedure
returns: a boolean

The directory? procedure calls (get-stat path) to determine whether or not path is a directory.

(filter-files path [keep-dir? keep-file?]) procedure
returns: a list of filenames

The filter-files procedure calls fold-files to accumulate a list of filenames. keep-dir? is a
procedure which should accept a full directory name and return true to descend into that directory.
keep-file? is a procedure which should accept a full path to a file and return true to keep the
filename in the final result list.

When keep-dir? and keep-file? are not specified, all directories under path are traversed, and all
filenames are returned.

(fold-files path init keep-dir? f) procedure
returns: see below

The fold-files procedure folds over directories and files starting at path and calls f with the full
path to each file and an accumulator (initially init).

For each directory, fold-files calls keep-dir? with the full directory name. When keep-dir? returns
true fold-files will descend into that directory.

Errors while enumerating the file system are ignored.

(force-close-output-port op) procedure
returns: unspecified

The force-close-output-port procedure is used to close an output port, even if it has unflushed
output that would otherwise cause it to fail to close. If op is not already closed, force-close-

60

output-port tries to close it with (close-output-port op). If it fails, the output buffer is cleared
with (clear-output-port op), and (close-output-port op) is called again.

(get-bytevector-exactly-n ip n) procedure
returns: a bytevector of length n

The get-bytevector-exactly-n procedure takes a binary input port ip and an exact nonnegative
integer n and returns a bytevector of the next n bytes from ip. If ip reaches end-of-file before it
obtains n bytes, get-bytevector-exactly-n throws an unexpected-eof exception.

(get-datum/annotations-all ip sfd bfp) procedure
returns: a list of annotated objects

The get-datum/annotations-all procedure takes a textual input port ip, a source-file descriptor
sfd, and an exact nonnegative integer bfp representing the character position of the next character
to be read from ip. The procedure returns a list of the annotated objects, in order, obtained by
repeatedly calling get-datum/annotations with the advancing bfp, until ip reaches the end of file.

(get-file-size port) procedure
returns: the number of bytes in the file associated with osi-port port

The get-file-size procedure calls osi_get_file_size to return the number of bytes in the file
associated with osi-port port.

If osi_get_file_size fails with error pair (who . errno), exception #(io-error filename who
errno) is raised.

(get-real-path path) procedure
returns: the canonicalized absolute pathname of path

The get-real-path procedure calls osi_get_real_path and returns the canonicalized absolute
pathname of path.

(get-source-offset ip) procedure
returns: an exact nonnegative integer

The get-source-offset procedure takes a binary input port ip that supports port-position,
skips over the #!interpreter-directive line, if any, and returns the resulting port-position.

(get-stat path [follow?]) procedure
returns: a <stat> tuple

The get-stat procedure calls osi_get_stat and returns the <stat> tuple for path, following a
symbolic link unless follow? is #f. If osi_get_stat fails with error pair (who . errno), exception
#(io-error path who errno) is raised.

(get-uname) procedure
returns: a <uname> tuple

The get-uname procedure returns a <uname> tuple of information about the operating system.

61

(hook-console-input) procedure
returns: unspecified

The hook-console-input procedure replaces the system console input port, which uses syn-
chronous I/O, with a custom textual input port that uses asynchronous I/O. It builds a custom
binary input port with osi_get_stdin, wraps it with binary->utf8, and sets the result as the
console-input-port, current-input-port, and the system internal $console-input-port. It
does nothing after it has been called once.

(io-error name who errno) procedure
returns: never

The io-error procedure raises exception #(io-error name who errno). The string name iden-
tifies the port. The symbol who specifies the procedure that raised an error, and the number errno
specifies the error code. The read-osi-port procedure raises this exception with who=osi_read_-
port, and the write-osi-port procedure raises it with who=osi_write_port.

(list-directory path) procedure
returns: ((name . type) . . .)

The list-directory procedure calls osi_list_directory and returns ((name . type) . . .), the
list of directory entries of path. It does not include “.” and “..”. name is the string name of the
directory entry, and type is one of the following constants:

DIRENT_UNKNOWN DIRENT_FILE DIRENT_DIR DIRENT_LINK DIRENT_FIFO
DIRENT_SOCKET DIRENT_CHAR DIRENT_BLOCK

If osi_list_directory fails with error pair (who . errno), exception #(io-error path who er-
rno) is raised.

(listen-tcp address port-number process) procedure
returns: a TCP listener

The listen-tcp procedure calls osi_listen_tcp to create a TCP listener on the given address
and port-number and returns a TCP listener that is registered with the listener guardian.

For each accepted connection, the message #(accept-tcp listener ip op) is sent to process, where
ip is the custom binary input port and op is the custom binary output port. Both ports support
port-position but not set-port-position!.

For each failed connection, the message #(accept-tcp-failed listener who errno) is sent to
process, where who and errno specify the error.

The address is a dotted quad IPv4 address or an IPv6 address. Use "::" to listen on all IPv4 and
IPv6 interfaces. Use "0.0.0.0" to listen on all IPv4 interfaces. Otherwise, it listens on the given
address only. If address is not a string, exception #(bad-arg listen-tcp address) is raised.

If port-number is zero, the operating system will choose an available port number, which can
be queried with listener-port-number. If port-number is not a fixnum between 0 and 65535
inclusive, exception #(bad-arg listen-tcp port-number) is raised.

If osi_listen_tcp fails with error pair (who . errno), exception #(listen-tcp-failed address
port-number who errno) is raised.

62

(listener-address listener) procedure
returns: the address field of listener

The listener-address procedure returns the address of the given TCP listener .

(listener-create-time listener) procedure
returns: a clock time in milliseconds

The listener-create-time procedure returns the clock time from erlang:now when the given
TCP listener was created.

(listener-port-number listener) procedure
returns: the port-number field of listener

The listener-port-number procedure returns the port-number of the given TCP listener .

(listener? x) procedure
returns: a boolean

The listener? procedure determines whether or not the datum x is a TCP listener.

(make-directory path [mode]) procedure
returns: unspecified

The make-directory procedure calls osi_make_directory to make directory path with mode,
which defaults to #o777.

If osi_make_directory fails with error pair (who . errno), exception #(io-error path who er-
rno) is raised.

(make-directory-path path [mode]) procedure
returns: path

The make-directory-path procedure creates directories as needed for the file path using mode,
which defaults to #o777. It returns path.

(make-osi-input-port p) procedure
returns: a binary input port

The make-osi-input-port procedure returns a custom binary input port that reads from osi-port
p and supports port-position but not set-port-position!. Closing the input port closes the
underlying osi-port p.

(make-osi-output-port p) procedure
returns: a binary output port

The make-osi-output-port procedure returns a custom binary output port that writes to osi-port
p and supports port-position but not set-port-position!. Closing the output port closes the
underlying osi-port p.

63

(make-utf8-transcoder) procedure
returns: a UTF-8 transcoder

The make-utf8-transcoder procedure creates a UTF-8 transcoder with end-of-line style none and
error-handling mode replace.

(open-fd-port name fd close?) procedure
returns: an osi-port

The open-fd-port procedure creates an osi-port with the given name by calling osi_open_fd with
fd and close?. The osi-port is registered with the osi-port guardian. When the osi-port is closed,
the underlying file descriptor fd is closed if and only if close? is not #f. When 0 ≤ fd ≤ 2, close?
must be #f for the standard I/O file descriptor.

(open-file name flags mode type) procedure
returns: a custom file port

The open-file procedure creates a custom file port by calling (open-file-port name flags
mode). The custom port supports both getting and setting the file position, except when type=append.
The particular type of custom port returned is determined by type:

• binary-input: a binary input port

• binary-output: a binary output port

• binary-append: a binary output port. Each write appends to the file by specifying position
−1.

• input: a textual input port wrapping a binary input port with binary->utf8

• output: a textual output port wrapping a binary output port with binary->utf8

• append: a textual output port wrapping a binary output port with binary->utf8. Each
write appends to the file by specifying position −1.

If type is any other value, exception #(bad-arg open-file type) is raised.

(open-file-port name flags mode) procedure
returns: an osi-port

The open-file-port procedure creates an osi-port by calling osi_open_file with name, flags,
and mode. The osi-port is registered with the osi-port guardian.

The following constants are defined for flags:

O_APPEND O_CREAT O_DIRECT O_DIRECTORY O_DSYNC O_EXCL
O_EXLOCK O_NOATIME O_NOCTTY O_NOFOLLOW O_NONBLOCK O_RANDOM
O_RDONLY O_RDWR O_SEQUENTIAL O_SHORT_LIVED O_SYMLINK O_SYNC
O_TEMPORARY O_TRUNC O_WRONLY

The following constants are defined for mode:

S_IFMT S_IFIFO S_IFCHR S_IFDIR S_IFBLK S_IFREG S_IFLNK S_IFSOCK

64

If osi_open_file fails with error pair (who . errno), exception #(io-error name who errno)
is raised.

(open-binary-file-to-append name) procedure
returns: a binary file port

The open-binary-file-to-append procedure calls
(open-file name (+ O_WRONLY O_CREAT O_APPEND) #o666 ’binary-append).

(open-binary-file-to-read name) procedure
returns: a binary file port

The open-binary-file-to-read procedure calls (open-file name O_RDONLY 0 ’binary-input).

(open-binary-file-to-replace name) procedure
returns: a binary file port

The open-binary-file-to-replace procedure calls
(open-file name (+ O_WRONLY O_CREAT O_TRUNC) #o666 ’binary-output).

(open-binary-file-to-write name) procedure
returns: a binary file port

The open-binary-file-to-write procedure calls
(open-file name (+ O_WRONLY O_CREAT O_EXCL) #o666 ’binary-output).

(open-file-to-append name) procedure
returns: a textual file port

The open-file-to-append procedure calls
(open-file name (+ O_WRONLY O_CREAT O_APPEND) #o666 ’append).

(open-file-to-read name) procedure
returns: a textual file port

The open-file-to-read procedure calls (open-file name O_RDONLY 0 ’input).

(open-file-to-replace name) procedure
returns: a textual file port

The open-file-to-replace procedure calls
(open-file name (+ O_WRONLY O_CREAT O_TRUNC) #o666 ’output).

(open-file-to-write name) procedure
returns: a textual file port

The open-file-to-write procedure calls
(open-file name (+ O_WRONLY O_CREAT O_EXCL) #o666 ’output).

65

(open-utf8-bytevector bv) procedure
returns: a transcoded textual input port wrapping bv

The open-utf8-bytevector procedure calls (binary->utf8 (open-bytevector-input-port bv)).

(osi-port-closed? p) procedure
returns: a boolean

The osi-port-closed? procedure determines whether or not the osi-port p is closed.

(osi-port-count) procedure
returns: the number of open osi-ports

The osi-port-count procedure returns the number of open osi-ports.

(osi-port-create-time p) procedure
returns: a clock time in milliseconds

The osi-port-create-time procedure returns the clock time from erlang:now when the osi-port
p was created.

(osi-port-name p) procedure
returns: a string

The osi-port-name procedure returns the name of osi-port p.

(osi-port? x) procedure
returns: a boolean

The osi-port? procedure determines whether or not the datum x is an osi-port.

(path-combine path1 path2 . . .) procedure
returns: the string combining the paths

The path-combine procedure appends one or more paths, inserting the directory-separator char-
acter between each pair of paths as needed, while ignoring empty paths.

(path-watcher-count) procedure
returns: the number of open path watchers

The path-watcher-count procedure returns the number of open path watchers.

(path-watcher-create-time watcher) procedure
returns: a clock time in milliseconds

The path-watcher-create-time procedure returns the clock time from erlang:now when the
given path watcher was created.

(path-watcher-path watcher) procedure
returns: the path field of watcher

66

The path-watcher-path procedure returns the path of the given path watcher .

(path-watcher? x) procedure
returns: a boolean

The path-watcher? procedure determines whether or not the datum x is a path watcher.

(port->notify-port p notify!) procedure
returns: a port

The port->notify-port procedure takes a custom binary port p and a notify! procedure of one
argument. It marks port p as closed and returns a new custom port whose r! or w! procedure calls
notify! with the number of bytes returned. This procedure is currently restricted to ports returned
by connect-tcp and ports obtained from an #(accept-tcp listener ip op) tuple.

(print-osi-ports [op]) procedure
returns: unspecified

The print-osi-ports procedure prints information about all open osi-ports to textual output port
op, which defaults to the current output port.

(print-path-watchers [op]) procedure
returns: unspecified

The print-path-watchers procedure prints information about all open path watchers to textual
output port op, which defaults to the current output port.

(print-signal-handlers [op]) procedure
returns: unspecified

The print-signal-handlers procedure prints information about all active signal handlers to tex-
tual output port op, which defaults to the current output port.

(print-tcp-listeners [op]) procedure
returns: unspecified

The print-tcp-listeners procedure prints information about all open TCP listeners to textual
output port op, which defaults to the current output port.

(read-bytevector name contents) procedure
returns: a list of annotations

The read-bytevector procedure takes a filename name and contents bytevector and returns a list
of annotations read using get-datum/annotations from the contents bytevector transcoded with
(make-utf8-transcoder).

(read-file name) procedure
returns: a bytevector with the contents of name

67

The read-file procedure calls (open-file-port name O_RDONLY 0) to open the file name and
returns the contents as a bytevector.

(read-osi-port port bv start n fp) procedure
returns: the number of bytes read

The read-osi-port procedure calls osi_read_port with the handle from the given osi-port port,
bytevector buffer bv, starting 0-based buffer index start, maximum number of bytes to read n,
and starting 0-based file position fp. To specify the current position, use fp=−1. The calling
process blocks for the I/O to complete. If the read fails with error pair (who . errno), exception
#(io-error name who errno) is raised, where name is the name of port. Otherwise, the number
of bytes read is returned. Error code UV_EOF (end of file) is not considered an error, and 0 is
returned.

(regular-file? path) procedure
returns: a boolean

The regular-file? procedure calls (get-stat path) to determine whether or not path is a regular
file.

(remove-directory path) procedure
returns: unspecified

The remove-directory procedure calls osi_remove_directory to remove directory path.

If osi_remove_directory fails with error pair (who . errno), exception #(io-error path who
errno) is raised.

(remove-file path) procedure
returns: unspecified

The remove-file procedure calls osi_unlink to remove file path.

If osi_unlink fails with error pair (who . errno), exception #(io-error path who errno) is
raised.

(rename-path path new-path) procedure
returns: unspecified

The rename-path procedure calls osi_rename to rename path to new-path.

If osi_rename fails with error pair (who . errno), exception #(io-error path who errno) is
raised.

(set-file-mode path mode) procedure
returns: unspecified

The set-file-mode procedure calls osi_chmod to set the file mode of path to mode.

If osi_chmod fails with error pair (who . errno), exception #(io-error path who errno) is
raised.

68

(signal-handler signum [callback]) procedure
returns: see below

The signal-handler procedure manages an internal table of global handlers for low-level signals.
The signum argument must be a positive fixnum. If no callback is supplied, signal-handler returns
the callback, if any, registered to handle that signal, or else #f. If the optional callback argument
is supplied, it must be #f or a procedure of one argument that is called with the signal number
when that signal is delivered. Since the callback procedure is called on the event loop, it must obey
the restrictions on event-loop callbacks (see page 41). Do not call app:shutdown from callback,
because it is not process-safe when no application is running. Instead, (spawn app:shutdown). At
startup, Swish installs handlers that call app:shutdown safely when certain signals are delivered.
The set of signals trapped at startup depends on the platform.

This procedure is like Chez Scheme’s register-signal-handler, except that signal-handler
is integrated into the Swish event loop. In particular, the callback supplied to signal-handler
can wake a sleeping process via send. When a signal signum is delivered to the Swish operating-
system process, e.g., via osi_kill, osi_get_callbacks returns a list of callbacks that includes
(@deliver-signal signum). If callback has been established to handle signum, then @deliver-
signal calls callback with signum.

The (swish io) library exports constants for the available signal numbers, which vary among
platforms. For platform-specific notes on signal handling, see [21]. Some signals cannot be handled
even though a handler may be established. Handling some signals may result in undefined behavior.

(signal-handler-count) procedure
returns: the number of open signal handlers

The signal-handler-count procedure returns the number of open signal handlers.

(spawn-os-process path args process) procedure
returns: four values: a binary output port to-stdin, a binary input port from-stdout, a binary
input port from-stderr , and an integer process identifier os-pid

The spawn-os-process procedure calls osi_spawn to spawn an operating system process with
the string path and list of string-valued args. It returns a custom binary output port to-stdin
that writes to the standard input of the process, custom binary input ports from-stdout and from-
stderr that read from the standard output and standard error of the process, respectively, and a
process identifier os-pid. These ports support port-position but not set-port-position!, and
the underlying osi-ports are registered with the osi-port guardian.

When the spawned process terminates, #(process-terminated os-pid exit-status term-signal) is
sent to process.

If osi_spawn returns error pair (who . errno), exception #(io-error path who errno) is raised.

(spawn-os-process-detached path args) procedure
returns: an integer operating-system process identifier

The spawn-os-process-detached procedure calls osi_spawn_detached to spawn an operating
system process with the string path and list of string-valued args. It returns an integer operating-
system process identifier.

69

If osi_spawn_detached returns error pair (who . errno), exception #(io-error path who er-
rno) is raised.

(stat-directory? x) procedure
returns: a boolean

The stat-directory? procedure determines whether or not the datum x is a <stat> tuple for a
directory.

(stat-regular-file? x) procedure
returns: a boolean

The stat-regular-file? procedure determines whether or not the datum x is a <stat> tuple for
a regular file.

(tcp-listener-count) procedure
returns: the number of open TCP listeners

The tcp-listener-count procedure returns the number of open TCP listeners.

(tcp-nodelay port enabled?) procedure
returns: a boolean

The tcp-nodelay procedure calls osi_tcp_nodelay to enable or disable the Nagle algorithm on
the specified TCP/IP port. It returns true if successful or false otherwise.

(watch-path path process) procedure
returns: a path watcher

The watch-path procedure calls osi_watch_path to track changes to path and returns a path
watcher that is registered with the path-watcher guardian.

Every time a change is detected, #(path-changed path filename events) is sent to process, where
filename is a string or #f and events is 1 for rename, 2 for change, and 3 for rename and change.
If the watcher encounters an error, #(path-watcher-failed path errno) is sent to process.

If osi_watch_path returns error pair (who . errno), exception #(io-error path who errno) is
raised.

(with-sfd-source-offset name handler) procedure
returns: see below

The with-sfd-source-offset procedure takes a filename name and returns the result of calling
the procedure handler with three arguments: ip, a textual port transcoded with (make-utf8-
transcoder), sfd, a source-file descriptor that refers to name, and source-offset, the value returned
by get-source-offset. Before returning, with-sfd-source-offset closes the textual port.

(write-osi-port port bv start n fp) procedure
returns: the number of bytes written

70

The write-osi-port procedure calls osi_write_port with the handle from the given osi-port
port, bytevector buffer bv, starting 0-based buffer index start, maximum number of bytes to write
n, and starting 0-based file position fp. To specify the current position, use fp=−1. The calling
process blocks for the I/O to complete. If the write fails with error pair (who . errno), exception
#(io-error name who errno) is raised, where name is the name of port. Otherwise, the number
of bytes written is returned.

4.4.9 Queues

A queue is represented as a pair of lists, (in . out). The out list contains the first elements of the
queue, and the in list contains the last elements of the queue in reverse. This representation allows
for O(1) amortized insertion and removal times. The implementation is based on the Erlang queue
module [11].

(queue:add x q) procedure
returns: a queue that adds x to the rear of q

(queue:add-front x q) procedure
returns: a queue that adds x to the front of q

(queue:drop q) procedure
returns: a queue without the first element of q

queue:empty syntax
returns: the empty queue

(queue:empty? q) procedure
returns: #t if q is queue:empty, #f otherwise

(queue:get q) procedure
returns: the first element of q

4.4.10 Hash Tables

The implementation of functional hash tables is based on the Erlang dict module [9, 16].

(ht:delete ht key) procedure
returns: a hash table formed by dropping any association of key from ht

(ht:fold ht f init) procedure
returns: see below

The ht:fold procedure accumulates a value by applying f to each key/value association in ht and
the accumulator, which is initially init. It can be defined recursively as follows, where n is the size
of ht, and the result of ht:fold is Fn:

71

F0 = init
Fi = (f keyi vali Fi−1) for 1 ≤ i ≤ n

(ht:is? x) procedure
returns: #t if x is a hash table, #f otherwise

(ht:keys ht) procedure
returns: a list of the keys of ht

(ht:make hash-key equal-key? valid-key?) procedure
returns: an empty hash table

The ht:make procedure returns an empty hash table.

The hash-key procedure takes a key and returns an exact integer. It must return the same integer
for equivalent keys.

The equal-key? procedure takes two keys and returns a true value if they are equivalent and #f
otherwise.

The valid-key? procedure takes a datum and returns a true value if it a valid key and #f otherwise.

(ht:ref ht key default) procedure
returns: the value associated with key in ht, default if none

(ht:set ht key val) procedure
returns: a hash table formed by associating key with val in ht

(ht:size ht) procedure
returns: the number of entries in ht

4.4.11 Error Strings

current-exit-reason->english parameter
value: a procedure of one argument that returns an English string

The current-exit-reason->english parameter specifies the conversion procedure used by exit-
reason->english. It defaults to swish-exit-reason->english.

(exit-reason->english x) procedure
returns: a string in U.S. English

The exit-reason->english procedure converts an exit reason into an English string using the
procedure stored in parameter current-exit-reason->english.

(swish-exit-reason->english x) procedure
returns: a string in U.S. English

The swish-exit-reason->english procedure converts an exit reason from Swish into an English
string.

72

4.4.12 String Utilities

The string utilities below are found in the (swish string-utils) library.

(ct:join sep s . . .) syntax
expands to: a string or a call to string-append

The ct:join macro uses ct:string-append to join adjacent string literals into a literal string or
a call to string-append where adjacent string literals are combined. The sep, which must be a
literal string or character, is inserted between adjacent elements of s

(ct:string-append s . . .) syntax
expands to: a string or a call to string-append

The ct:string-append macro appends adjacent string literals at compile time and expands into
the resulting literal string or a call to string-append where adjacent string literals are combined.

(ends-with? s p) procedure
returns: a boolean

The ends-with? procedure determines whether or not the string s ends with string p using case-
sensitive comparisons.

(ends-with-ci? s p) procedure
returns: a boolean

The ends-with-ci? procedure determines whether or not the string s ends with string p using
case-insensitive comparisons.

(format-rfc2822 d) procedure
returns: a string like “Thu, 28 Jul 2016 17:20:11 -0400”

The format-rfc2822 procedure returns a string representation of the date object d in the form
specified in Section 3.3 of RFC 2822 [23].

(join ls separator [last-separator]) procedure
returns: a string

The join procedure returns the string formed by displaying each of the elements of list ls separated
by displaying separator . When last-separator is specified, it is used as the last separator.

(natural-string<? s1 s2)
(natural-string-ci<? s1 s2)

procedure

returns: a boolean

These procedures compare strings s1 and s2 in a way that is more natural to humans than the
corresponding string<? and string-ci<? predicates. The natural comparison predicates:

1. ignore leading and trailing whitespace,

73

2. treat runs of multiple whitespace characters as a single space,

3. compare integers numerically, treating - as a dash if it follows an alphanumeric character or
else as negation, and

4. fall back to character comparison otherwise, with the -ci<? variant being case-insensitive.

(oxford-comma [prefix] elt-fmt conj [suffix]) procedure
returns: a string

The oxford-comma procedure constructs a format string for use with errorf, format, printf, etc.,
to join the elements of a list with commas and/or conj, as appropriate. The elt-fmt argument is
the format string for individual items of the list. The conj argument is a string used to separate
the final two elements of the list. The prefix and suffix arguments must be supplied together or
omitted. If omitted, prefix defaults to "~{" and suffix defaults to "~}".

(split str separator) procedure
returns: a list of strings

The split procedure divides the str string by the separator character into a list of strings, none
of which contain separator .

(split-n str separator n) procedure
returns: a list of no more than n strings

The split-n procedure divides the str string by the separator character into a list of at most n
strings. The last string may contain separator .

(starts-with? s p) procedure
returns: a boolean

The starts-with? procedure determines whether or not the string s starts with string p using
case-sensitive comparisons.

(starts-with-ci? s p) procedure
returns: a boolean

The starts-with-ci? procedure determines whether or not the string s starts with string p using
case-insensitive comparisons.

(trim-whitespace s) procedure
returns: a string

The trim-whitespace procedure returns a string in which any leading or trailing whitespace in s
has been removed. Internal whitespace is not affected.

(wrap-text op width initial-indent subsequent-indent text) procedure
returns: unspecified

74

The wrap-text procedure writes the given text to the textual output port op after collapsing
spaces that separate words. The first line is indented by initial-indent spaces. Subsequent lines
are indented by subsequent-indent spaces. If possible, wrap-text breaks lines that would exceed
width. Newlines and tabs are preserved, but tabs are treated as if they were the width of a single
character.

The text argument may be a string or a list of strings. If text is a list, it is treated as if it were the
string obtained via (join text #\space).

(symbol-append . ls) procedure
returns: a symbol

The symbol-append procedure returns the symbol formed by appending the symbols passed as
arguments.

4.4.13 Message Digests

(make-digest-provider name open hash! get-hash close) procedure
returns: a digest provider record

The make-digest-provider procedure takes a symbol name and a set of procedures and returns a
new digest provider that can be used as the value of current-digest-provider or as an argument
to open-digest.

The open procedure takes a string alg and an hmac-key that is either #f or a bytevector to use
for HMAC keyed hashing. If the digest provider does not support the specified message-digest
algorithm alg or the hmac-key, it should return an error pair or one of the symbols algorithm
or hmac-key to indicate which argument is invalid. Otherwise it should return a message-digest
context that can be passed to hash! , get-hash, and close.

The hash! procedure has the same interface as osi_hash_data and performs the analogous function
for the message-digest context initialized by open. It computes the message digest incrementally
on the set of bytes specified and updates the message-digest context.

The get-hash procedure has the same interface as osi_get_SHA1 and performs the analogous func-
tion for the message-digest context initialized by open and updated by hash! .

The close procedure frees a message-digest context initialized by open.

current-digest-provider parameter
returns: a digest provider record

The current-digest-provider parameter specifies the digest provider used by bytevector->hex-
string and by open-digest when the digest provider is not explicit.

default-digest-provider binding
returns: the default digest provider record

The default value of current-digest-provider is bound to default-digest-provider. The
default digest provider supports only the SHA1 message-digest algorithm; it does not support
HMAC keyed hashing.

75

(digest-provider-name dp) procedure
returns: the name of the digest provider

The digest-provider-name procedure returns the symbol that was supplied to make-digest-
provider when dp was created.

(open-digest alg [hmac-key [dp]]) procedure
returns: a message digest

The open-digest procedure takes a string or symbol alg naming a message-digest function sup-
ported by the digest provider dp, which defaults to the value of current-digest-provider. If alg
is a symbol, it is converted to an upper-case string before proceeding. The optional hmac-key may
be #f to disable HMAC keyed hashing; otherwise it must be a bytevector or a string. If hmac-key
is a string, it is converted to a bytevector using string->utf8.

The open-digest procedure disables interrupts while it calls the open procedure that was registered
with make-digest-provider, passing it the algorithm name as a string and the hmac-key as either
#f or a bytevector. If successful, it wraps the message-digest context returned by open in a message-
digest record md, registers md with a foreign-handle guardian using the type name digests, and
returns md.

(hash! md bv [start-index [size]]) procedure
returns: unspecified

The hash! procedure disables interrupts while it calls the hash! procedure of the message-digest
provider used in the open-digest call that returned md. The hash! procedure computes the
message digest incrementally on the set of size bytes in the bytevector bv starting at the zero-based
start-index. If omitted, start-index defaults to zero and size defaults to the size of bv. The hash!
procedure updates the message-digest context within md.

(get-hash md) procedure
returns: a bytevector

The get-hash procedure disables interrupts while it calls the get-hash procedure of the message-
digest provider used in the open-digest call that returned md. It returns a bytevector containing
the message digest accumulated in md by zero or more calls to hash!.

(close-digest md) procedure
returns: unspecified

The close-digest procedure disables interrupts, unregisters md with the foreign-handle guardian,
calls the close procedure of the message-digest provider used in the open-digest call that returned
md, then enables interrupts.

(hash->hex-string bv) procedure
returns: a string of lower-case hexadecimal digits

The hash->hex-string procedure takes a bytevector bv and returns the unsigned bytes in bv as a
string of lower-case hexadecimal digits.

76

(hex-string->hash s) procedure
returns: a bytevector

The hex-string->hash procedure takes a string s containing an even number of hexadecimal digits
and returns a bytevector half that size containing the unsigned bytes specified by adjacent pairs of
hexadecimal digits.

(bytevector->hex-string bv alg [block-size]) procedure
returns: a string of lower-case hexadecimal digits

The bytevector->hex-string procedure takes a bytevector bv and a string or symbol alg naming
a message-digest function supported by the current-digest-provider and returns the message
digest of bv using alg as a string of lower-case hexadecimal digits. To keep the event loop responsive,
bytevector->hex-string computes the message digest of bv incrementally in chunks of block-size,
which defaults to 16384. When the size of bv is not more than block-size, this is functionally
equivalent to the following:

(let ([md (open-digest alg)])
(on-exit (close-digest md)

(hash! md bv)
(hash->hex-string (get-hash md))))

(print-digests [op]) procedure
returns: unspecified

The print-digests procedure prints information about all open message-digest contexts to textual
output port op, which defaults to the current output port. This is the procedure returned by
(foreign-handle-print ’digests).

(digest-count) procedure
returns: the number of open message-digest contexts

The digest-count procedure returns the number of open message-digest contexts. This is the
procedure returned by (foreign-handle-count ’digests).

4.4.14 Data-Encoding Utilities

(base64-decode-bytevector bv)
(base64url-decode-bytevector bv)

procedure

returns: a bytevector

The base64-decode-bytevector and base64url-decode-bytevector procedures return a new
bytevector containing the data decoded from bytevector bv. The data in bv must be in the form
described in Section 4 or 5, respectively, of IETF RFC 4648 [24]. In keeping with Sections 3.1 and
3.3 of [24], line feeds and non-alphabetic characters are not permitted in bv and should be removed
before calling these procedures.

(base64-encode-bytevector bv)
(base64url-encode-bytevector bv)

procedure

returns: a bytevector

77

The base64-encode-bytevector and base64url-encode-bytevector procedures return a new
bytevector containing the binary data from bytevector bv encoded as printable US-ASCII characters
as described in Sections 4 and 5, respectively, of IETF RFC 4648 [24]. Both procedures encode
data using an alphabet including A-Z, a-z, and 0-9. For base64-encode-bytevector, the alphabet
also includes + and /. For base64url-encode-bytevector it includes - and _. In keeping with
Section 3.1 of [24], these procedures do not introduce line breaks in the output.

4.4.15 Macro Utilities

(pretty-syntax-violation msg form [subform [who]]) procedure
returns: never

The pretty-syntax-violation procedure raises a syntax violation. It differs from the native
syntax-violation in that it formats form and subform using pretty-format abbreviations, and
it does not attempt to infer a who condition when who is not provided, as this can produce confusing
results in error messages involving match patterns. To provide more readable exception messages, it
constructs the formatted message condition by calling pretty-print before raising the exception,
and it prevents display-condition from formatting the &syntax condition within the compound
condition it constructs.

(with-temporaries (id . . .) e0 e1 . . .) syntax
expands to:
(with-syntax ([(id ...) (generate-temporaries '(id ...))])

e0 e1 ...)

The with-temporaries macro binds each macro-language pattern variable id to a fresh generated
identifier within the body (begin e0 e1 . . .).

(define-syntactic-monad m id . . .) syntax
expands to: see below

The define-syntactic-monad macro defines a macro m for defining and calling procedures that
take implicit id . . . arguments in addition to any explicit arguments that may be provided. Such
macros make it easier to write state machines in a functional style by allowing the programmer to
specify only the values that change at a call.

A call to m takes the form (m e0 ([idi ei] . . .) x . . .) or (m kwd form . . .) where kwd is case-
lambda, define, lambda, let, trace-case-lambda, trace-define, trace-lambda, or trace-let.
The first form constructs a call to e0 and is described below along with the let case. The other
cases may be understood in terms of the following template expansions or their natural extension
to tracing variants:

(m lambda fmls body . . .) → (lambda (id fmls) body . . .)

(m define (proc . fmls) body . . .) → (define proc (m lambda fmls body . . .))

(m case-lambda [fmls body . . .] . . .) → (case-lambda [(id fmls) body . . .] . . .)

The call form (m e0 ([idi ei] . . .) x . . .) constructs a call to e0 where the arguments are the
id . . . with any idi replaced by ei all followed by the x . . . expressions. Any id that does not

78

have an explicit [idi ei] binding in the call form must have a binding in scope. For calls within
the body of an (m case-lambda . . .), (m define . . .), (m lambda . . .), or (m let . . .) form
such bindings are already in scope. As a convenience, the call syntax (m f) is equivalent to (m f
()) which specifies an empty list of implicit-binding updates.

The (m let . . .) form constructs a named let using syntax inspired by the call form described
above. That is, (m let name ([idi ei] . . .) ([xj ej] . . .) body . . .) constructs a named let
name that binds id . . . x . . . with the initial value of each id coming from the value of the
corresponding ei or else the binding already in scope and the initial value of each xj supplied by
the corresponding ej . Within body . . . , a call of the form (m name (idi . . .) ej . . .) can supply
required values for each of the xj along with new values for id . . . if needed.

79

Chapter 5

Regular Expressions

5.1 Introduction

The regular expressions library (swish pregexp) is a derivative of pregexp: Portable Regu-
lar Expressions for Scheme and Common Lisp [25]. It provides regular expressions modeled on
Perl’s [15, 27] and includes such powerful directives as numeric and non-greedy quantifiers, captur-
ing and non-capturing clustering, POSIX character classes, selective case- and space-insensitivity,
back-references, alternation, backtrack pruning, positive and negative look-ahead and look-behind,
in addition to the more basic directives familiar to all regexp users.

A regexp is a string that describes a pattern. A regexp matcher tries to match this pattern against
(a portion of) another string, which we will call the text string. The text string is treated as raw
text and not as a pattern.

Most of the characters in a regexp pattern are meant to match occurrences of themselves in the text
string. Thus, the pattern "abc" matches a string that contains the characters a, b, c in succession.

In the regexp pattern, some characters act as metacharacters, and some character sequences act
as metasequences. That is, they specify something other than their literal selves. For example, in
the pattern "a.c", the characters a and c do stand for themselves but the metacharacter ‘.’ can
match any character (other than newline). Therefore, the pattern "a.c" matches an a, followed
by any character, followed by a c.

If we needed to match the character ‘.’ itself, we escape it, i.e., precede it with a backslash (\).
The character sequence \. is thus a metasequence, since it doesn’t match itself but rather just ‘.’.
So, to match a followed by a literal ‘.’ followed by c, we use the regexp pattern "a\\.c".1 Another
example of a metasequence is \t, which is a readable way to represent the tab character.

We will call the string representation of a regexp the U-regexp, where U can be taken to mean Unix-
style or universal, because this notation for regexps is universally familiar. Our implementation
uses an intermediate tree-like representation called the S-regexp, where S can stand for Scheme,
symbolic, or s-expression. S-regexps are more verbose and less readable than U-regexps, but they
are much easier for Scheme’s recursive procedures to navigate.

1The double backslash is an artifact of Scheme strings, not the regexp pattern itself. When we want a literal
backslash inside a Scheme string, we must escape it so that it shows up in the string at all. Scheme strings use
backslash as the escape character, so we end up with two backslashes.

80

5.2 Programming Interface

(pregexp regexp) procedure
returns: an S-regexp

The pregexp procedure takes a U-regexp string regexp and returns an S-regexp.

(re regexp) syntax
expands to: (pregexp regexp)

If regexp is a literal string, the re macro expands to the result of evaluating (pregexp regexp) at
expand time. Otherwise it expands into a run-time call to pregexp.

(pregexp-match-positions pat str [start [end]]) procedure
returns: ((s . e) . . .) or #f

The pregexp-match-positions procedure takes a regexp pattern pat and a text string str and
returns a match if the regexp matches (some part of) the text string between the inclusive start
index (defaults to 0) and the exclusive end index (defaults to the length of str).

The regexp may be either a U- or an S-regexp. pregexp-match-positions will internally compile a
U-regexp to an S-regexp before proceeding with the matching. If you find yourself calling pregexp-
match-positions repeatedly with the same U-regexp, it may be advisable to explicitly convert the
latter into an S-regexp once beforehand, using pregexp, to save needless recompilation.

pregexp-match-positions returns a list of index pairs if the regexp matches the string and #f if it
does not match. Index pair (s . e) gives the inclusive starting index s and exclusive ending index
e of the matching substring with respect to str . The first index pair indicates the entire match,
and subsequent pairs indicate submatches. Some of the submatches may be #f.

(pregexp-match pat str [start [end]]) procedure
returns: list of matching substrings or #f

The pregexp-match procedure is called like pregexp-match-positions, but instead of return-
ing index pairs, it returns the matching substrings. The first substring is the entire match, and
subsequent substrings are submatches, some of which may be #f.

(pregexp-split pat str) procedure
returns: list of substrings from str

The pregexp-split procedure takes two arguments, a regexp pattern pat and a text string str , and
returns a list of substrings of the text string, where the pattern identifies the delimiter separating
the substrings. The returned substrings do not include the delimiter.

If the pattern can match an empty string, then the list of all the single-character substrings is
returned.

To identify one or more spaces as the delimiter, take care to use the regexp " +", not " *".

(pregexp-replace pat str ins) procedure
returns: a string

81

The pregexp-replace procedure replaces the matched portion of the text string by another string.
The first argument is the pattern pat, the second the text string str , and the third is the string to
be inserted ins, which may contain back-references (see §5.3.4).

If the pattern doesn’t occur in the text string, the returned string is identical (eq?) to str .

(pregexp-replace* pat str ins) procedure
returns: a string

The pregexp-replace* procedure replaces all matches of regexp pat in the text string str by the
insert string ins, which may contain back-references (see §5.3.4).

As with pregexp-replace, if the pattern doesn’t occur in the text string, the returned string is
identical (eq?) to str .

(pregexp-quote str) procedure
returns: a U-regexp

The pregexp-quote procedure takes an arbitrary string str and returns a U-regexp string that
precisely represents it. In particular, characters in the input string that could serve as regexp
metacharacters are escaped with a backslash, so that they safely match only themselves.

pregexp-quote is useful when building a composite regexp from a mix of regexp strings and
verbatim strings.

5.3 The Regexp Pattern Language

5.3.1 Basic Assertions

The assertions ^ and $ identify the beginning and the end of the text string respectively. They
ensure that their adjoining regexps match at the beginning or end of the text string. Examples:

(pregexp-match-positions "^contact" "first contact") ⇒ #f

The regexp fails to match because contact does not occur at the beginning of the text string.

(pregexp-match-positions "laugh$" "laugh laugh laugh laugh") ⇒ ((18 . 23)).

The regexp matches the last laugh.

The metasequence \b asserts that a word boundary exists.

(pregexp-match-positions "yack\\b" "yackety yack") ⇒ ((8 . 12))

The yack in yackety doesn’t end at a word boundary so it isn’t matched. The second yack does
and is.

The metasequence \B has the opposite effect to \b. It asserts that a word boundary does not exist.

(pregexp-match-positions "an\\B" "an analysis") ⇒ ((3 . 5))

The an that doesn’t end in a word boundary is matched.

82

5.3.2 Characters and Character Classes

Typically a character in the regexp matches the same character in the text string. Sometimes
it is necessary or convenient to use a regexp metasequence to refer to a single character. Thus,
metasequences \n, \r, \t, and \. match the newline, return, tab, and period characters respectively.

The metacharacter period (.) matches any character other than newline.

(pregexp-match "p.t" "pet") ⇒ ("pet")

It also matches pat, pit, pot, put, and p8t but not peat or pfffft.

A character class matches any one character from a set of characters. A typical format for this is
the bracketed character class [. . .], which matches any one character from the non-empty sequence
of characters enclosed within the brackets.2 Thus "p[aeiou]t" matches pat, pet, pit, pot, put
and nothing else.

Inside the brackets, a hyphen (-) between two characters specifies the ASCII range between the
characters. For example, "ta[b-dgn-p]" matches tab, tac, tad, and tag, and tan, tao, tap.

An initial caret (^) after the left bracket inverts the set specified by the rest of the contents, i.e., it
specifies the set of characters other than those identified in the brackets. For example, "do[^g]"
matches all three-character sequences starting with do except dog.

Note that the metacharacter ^ inside brackets means something quite different from what it means
outside. Most other metacharacters (., *, +, ?, etc.) cease to be metacharacters when inside
brackets, although you may still escape them for peace of mind. - is a metacharacter only when
it’s inside brackets, and neither the first nor the last character.

Bracketed character classes cannot contain other bracketed character classes (although they contain
certain other types of character classes—see below). Thus a left bracket ([) inside a bracketed
character class doesn’t have to be a metacharacter; it can stand for itself. For example, "[a[b]"
matches a, [, and b.

Furthermore, since empty bracketed character classes are disallowed, a right bracket (]) immediately
occurring after the opening left bracket also doesn’t need to be a metacharacter. For example,
"[]ab]" matches], a, and b.

Some Frequently Used Character Classes

Some standard character classes can be conveniently represented as metasequences instead of as
explicit bracketed expressions. \d matches a digit using char-numeric?; \s matches a whitespace
character using char-whitespace?; and \w matches a character that could be part of a word.3

The upper-case versions of these metasequences stand for the inversions of the corresponding char-
acter classes. Thus \D matches a non-digit, \S a non-whitespace character, and \W a non-word
character.

Remember to include a double backslash when putting these metasequences in a Scheme string:

2Requiring a bracketed character class to be non-empty is not a limitation, since an empty character class can be
more easily represented by an empty string.

3Following regexp custom, we identify word characters as alphabetic, numeric, or underscore (_).

83

(pregexp-match "\\d\\d" "0 dear, 1 have 2 read catch 22 before 9") ⇒ ("22")

These character classes can be used inside a bracketed expression. For example, "[a-z\\d]"
matches a lower-case letter or a digit.

POSIX Character Classes

A POSIX character class is a special metasequence of the form [:. . . :] that can be used only
inside a bracketed expression. The POSIX classes supported are:

[:alnum:] letters and digits
[:alpha:] letters
[:algor:] the letters c, h, a and d
[:ascii:] 7-bit ASCII characters
[:blank:] widthful whitespace, i.e., space and tab
[:cntrl:] control characters, viz, those with code < 32
[:digit:] digits, same as \d
[:graph:] characters that use ink
[:lower:] lower-case letters
[:print:] ink-users plus widthful whitespace
[:space:] whitespace, same as \s
[:upper:] upper-case letters
[:word:] letters, digits, and underscore, same as \w
[:xdigit:] hex digits

For example, the regexp "[[:alpha:]_]" matches a letter or underscore.

(pregexp-match "[[:alpha:]_]" "–x–") ⇒ ("x")

(pregexp-match "[[:alpha:]_]" "–_–") ⇒ ("_")

(pregexp-match "[[:alpha:]_]" "–:–") ⇒ #f

The POSIX class notation is valid only inside a bracketed expression. For instance, [:alpha:],
when not inside a bracketed expression, will not be read as the letter class. Rather it is (from
previous principles) the character class containing the characters :, a, l, p, and h.

(pregexp-match "[:alpha:]" "–a–") ⇒ ("a")

(pregexp-match "[:alpha:]" "–_–") ⇒ #f

By placing a caret (^) immediately after [:, you get the inversion of that POSIX character class.
Thus, [:^alpha:] is the class containing all characters except the letters.

5.3.3 Quantifiers

The quantifiers *, +, and ? match respectively: zero or more, one or more, and zero or one instances
of the preceding subpattern.

(pregexp-match-positions "c[ad]*r" "cadaddadddr") ⇒ ((0 . 11))

84

(pregexp-match-positions "c[ad]*r" "cr") ⇒ ((0 . 2))

(pregexp-match-positions "c[ad]+r" "cadaddadddr") ⇒ ((0 . 11))

(pregexp-match-positions "c[ad]+r" "cr") ⇒ #f

(pregexp-match-positions "c[ad]?r" "cadaddadddr") ⇒ #f

(pregexp-match-positions "c[ad]?r" "cr") ⇒ ((0 . 2))

(pregexp-match-positions "c[ad]?r" "car") ⇒ ((0 . 3))

Numeric Quantifiers

You can use braces to specify much finer-tuned quantification than is possible with *, +, and ?.

The quantifier {m} matches exactly m instances of the preceding subpattern. m must be a non-
negative integer.

The quantifier {m,n} matches at least m and at most n instances. m and n are nonnegative
integers with m ≤ n. You may omit either or both numbers, in which case m defaults to 0 and n
to infinity.

It is evident that + and ? are abbreviations for {1,} and {0,1} respectively. * abbreviates {,},
which is the same as {0,}.

(pregexp-match "[aeiou]{3}" "vacuous") ⇒ ("uou")

(pregexp-match "[aeiou]{3}" "evolve") ⇒ #f

(pregexp-match "[aeiou]{2,3}" "evolve") ⇒ #f

(pregexp-match "[aeiou]{2,3}" "zeugma") ⇒ ("eu")

Non-greedy Quantifiers

The quantifiers described above are greedy, i.e., they match the maximal number of instances that
would still lead to an overall match for the full pattern.

(pregexp-match "<.*>" "<tag1> <tag2> <tag3>") ⇒ ("<tag1> <tag2> <tag3>")

To make these quantifiers non-greedy, append a ? to them. Non-greedy quantifiers match the
minimal number of instances needed to ensure an overall match.

(pregexp-match "<.*?>" "<tag1> <tag2> <tag3>") ⇒ ("<tag1>")

The non-greedy quantifiers are respectively: *?, +?, ??, {m}?, and {m,n}?. Note the two uses of
the metacharacter ?.

5.3.4 Clusters

Clustering, i.e., enclosure within parentheses (. . .), identifies the enclosed subpattern as a single
entity. It causes the matcher to capture the submatch, or the portion of the string matching the
subpattern, in addition to the overall match.

85

(pregexp-match "([a-z]+) ([0-9]+), ([0-9]+)" "jan 1, 1970")
⇒ ("jan 1, 1970" "jan" "1" "1970")

Clustering also causes a following quantifier to treat the entire enclosed subpattern as an entity.

(pregexp-match "(poo)*" "poo poo platter") ⇒ ("poo poo " "poo ")

The number of submatches returned is always equal to the number of subpatterns specified in the
regexp, even if a particular subpattern happens to match more than one substring or no substring
at all.

(pregexp-match "([a-z]+;)*" "lather; rinse; repeat;")
⇒ ("lather; rinse; repeat;" " repeat;")

Here the *-quantified subpattern matches three times, but it is the last submatch that is returned.

It is also possible for a quantified subpattern to fail to match, even if the overall pattern matches.
In such cases, the failing submatch is represented by #f.

(define date-re
;; match 'month year' or 'month day, year'.
;; subpattern matches day, if present
(pregexp "([a-z]+) +([0-9]+,)? *([0-9]+)"))

(pregexp-match date-re "jan 1, 1970") ⇒ ("jan 1, 1970" "jan" "1," "1970")

(pregexp-match date-re "jan 1970") ⇒ ("jan 1970" "jan" #f "1970")

Back-references

Submatches can be used in the insert string argument of the procedures pregexp-replace and
pregexp-replace*. The insert string can use \n as a back-reference to refer back to the nth

submatch, i.e., the substring that matched the nth subpattern. \0 refers to the entire match, and
it can also be specified as \&.

(pregexp-replace "_(.+?)_" "the _nina_, the _pinta_, and the _santa maria_" "*\\1*")
⇒ "the *nina*, the _pinta_, and the _santa maria_"

(pregexp-replace* "_(.+?)_" "the _nina_, the _pinta_, and the _santa maria_" "*\\1*")
⇒ "the *nina*, the *pinta*, and the *santa maria*"

(pregexp-replace "(\\S+) (\\S+) (\\S+)" "eat to live" "\\3 \\2 \\1")
⇒ "live to eat"

Use \\ in the insert string to specify a literal backslash. Also, \$ stands for an empty string, and
is useful for separating a back-reference \n from an immediately following number.

Back-references can also be used within the regexp pattern to refer back to an already matched
subpattern in the pattern. \n stands for an exact repeat of the nth submatch.4

4\0, which is useful in an insert string, makes no sense within the regexp pattern, because the entire regexp has
not matched yet that you could refer back to it.

86

(pregexp-match "([a-z]+) and \\1" "billions and billions")
⇒ ("billions and billions" "billions")

Note that the back-reference is not simply a repeat of the previous subpattern. Rather it is a repeat
of the particular substring already matched by the subpattern.

In the above example, the back-reference can only match billions. It will not match millions,
even though the subpattern it harks back to—([a-z]+)—would have had no problem doing so:

(pregexp-match "([a-z]+) and \\1" "billions and millions") ⇒ #f

The following corrects doubled words:

(pregexp-replace* "(\\S+) \\1" "now is the the time for all good men to to come to
the aid of of the party" "\\1")
⇒ "now is the time for all good men to come to the aid of the party"

The following marks all immediately repeating patterns in a number string:

(pregexp-replace* "(\\d+)\\1" "123340983242432420980980234" "\\1,\\1")
⇒ "123,34098324,243242098,0980234"

Non-capturing Clusters

It is often required to specify a cluster (typically for quantification) but without triggering the
capture of submatch information. Such clusters are called non-capturing. In such cases, use (?:
instead of (as the cluster opener. In the following example, the non-capturing cluster eliminates
the directory portion of a given pathname, and the capturing cluster identifies the basename.

(pregexp-match "^(?:[a-z]*/)*([a-z]+)$" "/usr/local/bin/scheme")
⇒ ("/usr/local/bin/scheme" "scheme")

Cloisters

The location between the ? and the : of a non-capturing cluster is called a cloister.5 You can put
modifiers there that will cause the enclustered subpattern to be treated specially. The modifier i
causes the subpattern to match case-insensitively:

(pregexp-match "(?i:hearth)" "HeartH") ⇒ ("HeartH")

The modifier x causes the subpattern to match space-insensitively, i.e., spaces and comments within
the subpattern are ignored. Comments are introduced as usual with a semicolon (;) and extend
till the end of the line. If you need to include a literal space or semicolon in a space-insensitized
subpattern, escape it with a backslash.

(pregexp-match "(?x: a lot)" "alot") ⇒ ("alot")

(pregexp-match "(?x: a \\ lot)" "a lot")
⇒ ("a lot")

(pregexp-match "(?x:
5A useful, if terminally cute, coinage from the abbots of Perl [27].

87

a \\ man \\; \\ ; ignore
a \\ plan \\; \\ ; me
a \\ canal ; completely
)"

"a man; a plan; a canal")

⇒ ("a man; a plan; a canal")

You can put more than one modifier in the cloister.

(pregexp-match "(?ix:
a \\ man \\; \\ ; ignore
a \\ plan \\; \\ ; me
a \\ canal ; completely
)"

"A Man; a Plan; a Canal")

⇒ ("A Man; a Plan; a Canal")

A minus sign before a modifier inverts its meaning. Thus, you can use -i and -x in a subcluster to
overturn the insensitivities caused by an enclosing cluster.

(pregexp-match "(?i:the (?-i:TeX)book)" "The TeXbook") ⇒ ("The TeXbook")

This regexp will allow any casing for the and book but insists that TeX not be differently cased.

5.3.5 Alternation

You can specify a list of alternate subpatterns by separating them by |. The | separates subpatterns
in the nearest enclosing cluster (or in the entire pattern string if there are no enclosing parentheses).

(pregexp-match "f(ee|i|o|um)" "a small, final fee") ⇒ ("fi" "i")

(pregexp-replace* "([yi])s(e[sdr]?|ing|ation)"
"it is energising to analyse an organisation pulsing with noisy organisms"
"\\1z\\2")

⇒ "it is energizing to analyze an organization pulsing with noisy organisms"

Note again that if you wish to use clustering merely to specify a list of alternate subpatterns but
do not want the submatch, use (?: instead of (.

(pregexp-match "f(?:ee|i|o|um)" "fun for all") ⇒ ("fo")

An important thing to note about alternation is that the leftmost matching alternate is picked
regardless of its length. Thus, if one of the alternates is a prefix of a later alternate, the latter may
not have a chance to match.

(pregexp-match "call|call/cc" "call/cc") ⇒ ("call")

To allow the longer alternate to have a shot at matching, place it before the shorter one:

(pregexp-match "call/cc|call" "call/cc") ⇒ ("call/cc")

88

In any case, an overall match for the entire regexp is always preferred to an overall non-match. In
the following, the longer alternate still wins, because its preferred shorter prefix fails to yield an
overall match.

(pregexp-match "(?:call|call/cc) constrained" "call/cc constrained")
⇒ ("call/cc constrained")

5.3.6 Backtracking

We’ve already seen that greedy quantifiers match the maximal number of times, but the overriding
priority is that the overall match succeed. Consider

(pregexp-match "a*a" "aaaa")

The regexp consists of two subregexps, a* followed by a. The subregexp a* cannot be allowed to
match all four a’s in the text string "aaaa", even though * is a greedy quantifier. It may match
only the first three, leaving the last one for the second subregexp. This ensures that the full regexp
matches successfully.

The regexp matcher accomplishes this via a process called backtracking. The matcher tentatively
allows the greedy quantifier to match all four a’s, but then when it becomes clear that the overall
match is in jeopardy, it backtracks to a less greedy match of three a’s. If even this fails, as in the
call

(pregexp-match "a*aa" "aaaa")

the matcher backtracks even further. Overall failure is conceded only when all possible backtracking
has been tried with no success.

Backtracking is not restricted to greedy quantifiers. Nongreedy quantifiers match as few instances
as possible, and progressively backtrack to more and more instances in order to attain an overall
match. There is backtracking in alternation, too, as the more rightward alternates are tried when
locally successful leftward ones fail to yield an overall match.

Disabling Backtracking

Sometimes it is efficient to disable backtracking. For example, we may wish to commit to a choice,
or we know that trying alternatives is fruitless. A non-backtracking regexp is enclosed in (?>. . .).

(pregexp-match "(?>a+)." "aaaa") ⇒ #f

In this call, the subregexp ?>a+ greedily matches all four a’s, and is denied the opportunity to
backtrack. So the overall match is denied. The effect of the regexp is therefore to match one or
more a’s followed by something that is definitely non-a.

5.3.7 Looking Ahead and Behind

You can have assertions in your pattern that look ahead or behind to ensure that a subpattern does
or does not occur. These look-around assertions are specified by putting the subpattern checked
for in a cluster whose leading characters are ?= for positive look-ahead, ?! for negative look-ahead,

89

?<= for positive look-behind, and ?<! for negative look-behind. Note that the subpattern in the
assertion does not generate a match in the final result. It merely allows or disallows the rest of the
match.

Look-ahead

Positive look-ahead (?=) peeks ahead to ensure that its subpattern could match.

(pregexp-match-positions "grey(?=hound)" "i left my grey socks at the greyhound")
⇒ ((28 . 32))

The regexp "grey(?=hound)" matches grey, but only if it is followed by hound. Thus, the first
grey in the text string is not matched.

Negative look-ahead (?!) peeks ahead to ensure that its subpattern could not possibly match.

(pregexp-match-positions "grey(?!hound)" "the gray greyhound ate the grey socks")
⇒ ((27 . 31))

The regexp "grey(?!hound)" matches grey, but only if it is not followed by hound. Thus the grey
just before socks is matched.

Look-behind

Positive look-behind (?<=) checks that its subpattern could match immediately to the left of the
current position in the text string.

(pregexp-match-positions "(?<=grey)hound" "the hound is not a greyhound")
⇒ ((23 . 28))

The regexp (?<=grey)hound matches hound, but only if it is preceded by grey.

Negative look-behind (?<!) checks that its subpattern could not possibly match immediately to
the left.

(pregexp-match-positions "(?<!grey)hound" "the greyhound is not a hound")
⇒ ((23 . 28))

The regexp (?<!grey)hound matches hound, but only if it is not preceded by grey.

Look-aheads and look-behinds can be convenient when they are not confusing.

90

Chapter 6

Generic Server

The generic server provides an “empty” server, that is, a framework from which in-
stances of servers can be built. —Joe Armstrong [1]

6.1 Introduction

In a concurrent system, many processes need to access a shared resource or sequentially manipulate
the state of the system. This is generally modeled using a client/server design pattern. To help
developers build robust servers, a generic server (gen-server) implementation inspired by Erlang’s
Open Telecom Platform is provided.

The principles of the generic server can be found in Joe Armstrong’s thesis [1] or Programming
Erlang—Software for a Concurrent World [2]. Documentation for Erlang’s gen_server is available
online [10]. Source code for the Erlang Open Telecom Platform can be found online [8]. The source
code for gen_server is part of stdlib and can be found in /lib/stdlib/src/gen_server.erl.

6.2 Theory of Operation

A gen-server provides a consistent mechanism for programmers to create a process which manages
state, timeout conditions, and failure conditions using functional programming techniques. A pro-
grammer uses gen-server:start&link and implements the callback API to instantiate particular
behavior.

A generic server starts a new process, registers it as a named process, and invokes the init callback
procedure while blocking the calling process.

Clients can then send messages to a server using the synchronous gen-server:call, the asyn-
chronous gen-server:cast, or the raw send procedure. The gen-server framework will auto-
matically process messages and dispatch them to handle-call, handle-cast, and handle-info
respectively.

The gen-server framework code automatically interprets a stop return value from the callback
API or an EXIT message from the process which created it as a termination request and calls

91

terminate. If the termination reason satisfies the informative-exit-reason? predicate, generic
servers use event-mgr:notify to report the termination.

Erlang’s gen_server supports timeouts during gen_server:start and gen_server:start&link.
In order to simplify the startup code, we have not implemented this feature. Timeouts while
running the init callback may cause resources to be stranded until the garbage collector can clean
them up. Timeouts during initialization should be considered carefully.

6.3 Programming Interface

(gen-server:start&link name arg . . .) syntax
returns: #(ok pid) | #(error reason) | ignore

name: a symbol for a registered server or #f for an anonymous server
arg: any Scheme datum

gen-server:start&link spawns the server process, links to the calling process, registers the server
process as name, and calls (init arg . . .) within that process. To ensure a synchronized startup
procedure, gen-server:start&link does not return until init has returned.

This macro uses the current scope to capture the callback functions init, handle-call, handle-
cast, handle-info, and terminate.

Attempting to register a name that already exists results in #(error #(name-already-registered
pid)), where pid is the existing process.

The return value of gen-server:start&link is propagated from the init callback.

An init which returns #(ok state [timeout]) will yield #(ok pid) where pid is the newly created
process.

An init which returns #(stop reason) or exits with reason will terminate the process and yield
#(error reason).

An init which returns ignore will terminate the process and yield ignore. This value is useful to
inform a supervisor that the init procedure has determined that this server is not necessary for
the system to operate.

An init which returns other values will terminate the process and yield #(error #(bad-return-
value other)).

(gen-server:start name arg . . .) syntax
returns: #(ok pid) | #(error error) | ignore

gen-server:start behaves the same as gen-server:start&link except that it does not link to
the calling process.

(gen-server:enter-loop state [timeout]) syntax
returns: does not return

gen-server:enter-loop transforms the calling process into a generic server. The state and timeout
are equivalent to those returned by init.

92

On entry, the macro calls (process-name) to determine the registered name of the process, if any,
and (process-parent) to determine the spawning process, if available, for logging and process-
ing termination. As a result, the name recorded in <gen-server-terminating> will not reflect
subsequent changes in process registration.

This macro uses the current scope to capture the callback functions handle-call, handle-cast,
handle-info, and terminate.

While gen-server:enter-loop does not return normally, it does raise an exception upon termi-
nation. This allows any exception handlers or winders on the stack to run.

(gen-server:call server request [timeout]) procedure
returns: reply

server : process or registered name
request: any Scheme datum
timeout: non-negative exact integer in milliseconds or infinity, defaults to 5000

gen-server:call sends a synchronous request to server and waits for a reply. The server processes
the request using handle-call.

Failure to receive a reply causes the calling process to exit with reason #(timeout #(gen-server
call (server request))) if no timeout is specified, or #(timeout #(gen-server call (server
request timeout))) if a timeout is specified. If the caller catches the failure and continues running,
the caller must be prepared for a possible late reply from the server.

When the reply is a fault condition, the fault is thrown in the calling process.

gen-server:call exits if the server terminates while the client is waiting for a reply. When that
happens, the client exits for the same reason as the server.

(gen-server:cast server request) procedure
returns: ok

server : process or registered name
request: any Scheme datum

gen-server:cast sends an asynchronous request to a server and returns ok immediately. When
using gen-server:cast a client does not expect failures in the server to cause failures in the client;
therefore, this procedure ignores all failures. The server will process the request using handle-cast.

(gen-server:reply client reply) procedure
returns: ok
client: a from argument provided to the handle-call callback
reply: any Scheme datum

A server can use gen-server:reply to send a reply to a client that called gen-server:call and
is blocked awaiting a reply.

In some situations, a server cannot reply immediately to a client. In such cases, handle-call may
store the from argument and return no-reply. Later, the server can call gen-server:reply using
that from value as client. The reply is the return value of the gen-server:call in this case.

93

(gen-server:debug server server-options client-options) procedure
returns: ok

server : process or registered name
server-options: ([message] [state] [reply]) | #f
client-options: ([message] [reply]) | #f

gen-server:debug sets the debugging mode of server . The server-options argument specifies the
logging of calls in the server. When server-options is #f, server logging is turned off. Otherwise,
server logging is turned on, and server-options is a list of symbols specifying the level of detail. In
logging mode, the server sends a <gen-server-debug> event for each call to handle-call, handle-
cast, and handle-info. The message field is populated when message is in server-options, the
state field is populated when state is in server-options, and the reply field is populated when reply
is in server-options.

Similarly, the client-options argument specifies the logging of client calls to server with gen-
server:call. When client-options is #f, client logging is turned off. Otherwise, client logging
is turned on, and client-options is a list of symbols specifying the level of detail. In logging mode,
gen-server:call sends a <gen-server-debug> event. The message field is populated when mes-
sage is in client-options, and the reply field is populated when reply is in client-options.

(define-state-tuple name field . . .) syntax

This form defines a tuple type using (define-tuple name field . . .) and defines a new syntactic
form $state. $state provides a succinct syntax for the state variable.

$state transforms ($state op arg . . .) to (name op state arg . . .) where state is a variable
in the same scope as $state.

Given this definition:

(define-state-tuple <my-state> x y z)

The following code is equivalent:

(<my-state> copy state [x 2]) ($state copy [x 2])
(<my-state> x state) ($state x)
(<my-state> y state) ($state y)
(<my-state> z state) ($state z)

There is no equivalent for constructing a state tuple because constructing a tuple does not require
the state variable. The (<my-state> make . . .) syntax must be used.

6.4 Published Events

All generic servers send the event manager the following event:

94

<gen-server-terminating> event
timestamp: the time the event occured

name: the name of the server
pid: the server process

last-message: the last message received by the server
state: the last state passed into terminate

reason: the reason for termination
details: #f or a fault-condition containing the reason for termination

This event is fired after a successful call to terminate if the reason for termination satisfies the
informative-exit-reason? predicate. If the terminate procedure exits with a new reason, the
event contains the new reason.

<gen-server-debug> event
timestamp: the time the operation started

duration: the duration of the operation in milliseconds
type: 1 for handle-call, 2 for handle-cast, 3 for handle-info, 4 for ter-

minate, 5 for a successful gen-server:call, and 6 for a failed gen-
server:call

client: the client process or #f
server : the server process

message: the message sent to the server or #f
state: the state of the server when it received the message or #f
reply: the server’s reply or #f

6.5 Callback Interface

A programmer implements the callback interface to define a particular server’s behavior. All
callback functions are called from within the server process.

The callback functions for gen-server processes are supposed to be well-behaved functions, i.e., func-
tions that work correctly. The generation of an exception in a well-behaved function is interpreted
as a failure [1].

When a callback function exits with a reason, terminate is called and the server exits.

When a callback function returns an unexpected value, terminate is called with the reason #(bad-
return-value value), and the server exits.

A callback may specify a timeout as a relative time in milliseconds up to one day, an absolute time
in milliseconds (e.g., from erlang:now), or infinity. The default timeout is infinity. If the
time period expires before another message is received, then a timeout message will be processed
by handle-info.

Messages sent using send, including those matching ‘(EXIT pid reason) and ‘(DOWN monitor pid
reason), are processed by handle-info.

The generic server framework will automatically interpret an EXIT message from the process which
spawned it as a reason for termination. terminate will be called directly. handle-info will not
be called. The server must use (process-trap-exit #t) to receive EXIT messages.

95

(init arg . . .) procedure
returns: #(ok state [timeout]) | #(stop reason) | ignore

arg . . . : the arg . . . provided to gen-server:start&link or gen-server:start
state: any Scheme datum

timeout: relative time in milliseconds up to one day, absolute time in milliseconds
(e.g., from erlang:now), or infinity (default)

reason: any Scheme datum

(init arg . . .) is called from a new server process started by a call to gen-server:start&link
or gen-server:start. Calls to those procedures block until init returns.

A successful init returns #(ok state [timeout]). The state is then maintained functionally by the
generic server framework.

init may specify that server initialization failed by returning #(stop reason). The server will
then fail to start using this reason. terminate will not be called as the server has not properly
started.

init may return ignore. The server will then exit with reason normal, and gen-server:start&link
will return ignore. This is used to inform a supervisor that the server is not necessary for the
system to operate. terminate will not be called.

(handle-call request from state) procedure
returns: #(reply reply state [timeout]) | #(no-reply state [timeout]) | #(stop reason [reply]
state)

request: the request provided to gen-server:call
from: #(client-process tag)
state: server state
reply: any Scheme datum

timeout: relative time in milliseconds up to one day, absolute time in milliseconds
(e.g., from erlang:now), or infinity (default)

reason: any Scheme datum

handle-call is responsible for processing a client request generated by gen-server:call.

handle-call may return #(reply reply state [timeout]) to indicate that reply is to be returned
from gen-server:call to the caller. The server state will become state.

handle-call may return #(no-reply state [timeout]) to continue operation and to indicate that
the caller of gen-server:call will continue to wait for a reply. The server state will become state.
The server will need to use gen-server:reply and from to reply to the client.

handle-call may return #(stop reason [reply] state) to set a new state, then terminate the
server with the given reason. If the optional reply is specified, it will be the return value of gen-
server:call; otherwise, gen-server:call will exit with reason.

reply is any Scheme datum.

state is any Scheme datum.

reason is any Scheme datum.

96

(handle-cast request state) procedure
returns: #(no-reply state [timeout]) | #(stop reason state)

request: the request provided to gen-server:cast
state: server state

timeout: relative time in milliseconds up to one day, absolute time in milliseconds
(e.g., from erlang:now), or infinity (default)

reason: any Scheme datum

handle-cast is responsible for processing a client request generated by gen-server:cast.

handle-cast may return #(no-reply state [timeout]) to continue operation. The server state will
become state.

handle-cast may return #(stop reason state) to terminate the server with the given reason. The
server state will become state.

(handle-info msg state) procedure
returns: #(no-reply state [timeout]) | #(stop reason state)

msg: timeout or a Scheme datum sent via send
state: server state

timeout: relative time in milliseconds up to one day, absolute time in milliseconds
(e.g., from erlang:now), or infinity (default)

reason: any Scheme datum

handle-info is responsible for processing timeouts and miscellaneous messages sent to the server
via send.

handle-info may return #(no-reply state [timeout]) to continue operation. The server state will
become state.

handle-info may return #(stop reason state) to terminate the server with the given reason. The
server state will become state.

(terminate reason state) procedure
returns: ignored

reason: shutdown reason
state: server state

terminate is called when the server is about to terminate. It is responsible for cleaning up any
resources that the server allocated. When it returns, the server exits for the given reason.

reason can be any reason specified by a stop return value #(stop . . .). When a supervision tree
is terminating, reason will be shutdown.

The return value of terminate is ignored. If the termination reason satisifies the informative-
exit-reason? predicate, the generic server framework uses event-mgr:notify to report the ter-
mination. The server then terminates for that reason.

If terminate exits with reason, then that reason is logged, and the server terminates with reason.

97

Chapter 7

Event Manager

7.1 Introduction

The event manager (event-mgr) is a gen-server that provides a single dispatcher for events within
the system. It buffers events and dispatches them to the log handler and a collection of other event
handlers. If the log handler fails, the event manager logs events directly to the console error port.

7.2 Theory of Operation

The event manager is a singleton process through which all events in the system are routed. Any
component may notify the event manager that something has occurred by using event-mgr:notify.
This model is illustrated in Figure 7.1.

The event manager is a registered process named event-mgr.

The event manager is created as part of the application’s supervision hierarchy. It buffers incoming
events during startup until event-mgr:flush-buffer is called. The buffered events are then sent
to the current event handlers and the log handler. This provides the ability to log the startup
details of processes, including the event manager itself.

The event handlers should not perform blocking operations, because they block the entire event
manager.

If the log handler or its associated process fails, the event manager logs events to the console error
port. If another event handler fails with some reason, the associated process is killed with the same
reason. When the process associated with a handler terminates, the event manager removes it from
the list.

98

gen-server
supervisor

persistent storage

application
code

other event
handlers

event-mgr

log-
handler

logger

Figure 7.1: Event flow

state

<event-mgr-state> tuple
event-buffer : list of events to be processed (most recent first), or #f when buffering is

disabled
log-handler : <handler> tuple or #f

handlers: list of <handler> tuples

<handler> tuple

proc: procedure of one argument, the event
owner : process that owns the handler

init The init procedure initializes the state of the gen-server. Event buffering is enabled.

The gen-server traps exits so that it can detect failure of event handler owner processes, as well as
the EXIT message from the parent process.

terminate The terminate procedure flushes any pending events to the console error port using
do-notify.

handle-call The handle-call procedure processes the following messages:

99

• #(add-handler proc owner): Link to the owner process, add a handler to the state and
return ok.
An invalid argument results in the following error reasons:

– #(invalid-procedure proc)
– #(invalid-owner owner)

• flush-buffer: Process the events in the buffer using do-notify, turn off buffering, and
return ok.

• #(set-log-handler proc owner endure?): Link to the owner process, set the log handler
of the state, and return ok.
An invalid argument results in the following error reasons:

– log-handler-already-set
– #(invalid-procedure proc)
– #(invalid-owner owner)

handle-cast The handle-cast procedure does not process any messages.

handle-info The handle-info procedure handles messages matching the following patterns:
• #(notify event): Process event using do-notify.

event is any Scheme datum.

• ‘(EXIT pid _): Removes the log or other event handler associated with pid.

Internally, the (do-notify event state) procedure handles the processing of each event with re-
spect to the current state. It evaluates the state in the following way:

• If the state is not buffering:

1. Call each handler’s proc with event. If it exits for some reason, kill the handler’s owner
with the same reason.

2. If there is a log handler, call its proc with event. If it exits for some reason, unlink its
owner , kill it with the same reason, log event to the console error port using console-
event-handler, and remove the log handler from the state.

• Otherwise, buffer the event.

7.3 Programming Interface

(event-mgr:start&link) procedure
returns: #(ok pid) | #(error reason)

The event-mgr:start&link procedure creates a new event-mgr gen-server using gen-server:start&link.

The event manager is registered as event-mgr.

100

(event-mgr:add-handler proc [owner]) procedure
returns: ok | #(error reason)

The event-mgr:add-handler procedure calls (gen-server:call event-mgr #(add-handler proc
owner)).

proc is a procedure of one argument, the event. Failure in proc results in the event manager killing
the owner process with the same failure reason. The handler is removed when the event manager
receives an EXIT message from owner .

owner is a process. The default is the calling process.

(event-mgr:flush-buffer) procedure
returns: ok

The event-mgr:flush-buffer procedure calls (gen-server:call event-mgr flush-buffer).

(event-mgr:notify event) procedure
returns: ok

The event-mgr:notify procedure sends message #(notify event) to registered process event-
mgr if it exists. If event-mgr does not exist, it prints event using console-event-handler.

event is any Scheme datum.

(event-mgr:set-log-handler proc owner [endure?]) procedure
returns: ok | #(error reason)

The event-mgr:set-log-handler procedure calls (gen-server:call event-mgr #(set-log-handler
proc owner endure?)).

proc and endure? are procedures of one argument, the event. If proc fails and endure? returns false,
the event is logged to the console and the event manager kills the owner process with the same
failure reason. This is the default behavior since the default endure? procedure always returns
false. However, if proc fails and endure? returns true, the event is logged to the console followed
by the fault in proc, and the fault is tolerated. The log handler is removed when proc fails and
endure? returns true or when the event manager receives an EXIT message from owner .

owner is a process.

(informative-exit-reason? x) procedure
returns: boolean

The informative-exit-reason? procedure returns #t if x is a fault condition containing a con-
tinuation or containing a reason other than normal or shutdown. Otherwise it returns #t if x is
not normal or shutdown.

(normalize-exit-reason r [e]) procedure
returns: reason and details

The normalize-exit-reason procedure takes r and e from matching ‘(catch ,r [,e]), ‘(EXIT
p ,r [,e]), or ‘(DOWN m p ,r [,e]) and returns two values, reason and details, suitable for use in

101

<child-end>, <gen-server-terminating>, and <supervisor-error> events. If r is a condition,
then reason is the symbol exception and details is either e if it satisfies informative-exit-
reason? or r . Otherwise reason is r and details is e if it satisfies informative-exit-reason? or
a fault condition for r if r satisfies the informative-exit-reason? predicate. If the optional e is
omitted, then r is matched against the extended match pattern ‘(catch ,r ,e). If this pattern
matches, then normalize-exit-reason is called with the values obtained for r and e. Otherwise,
r is used for both r and e.

102

Chapter 8

Gatekeeper

8.1 Introduction

The gatekeeper is a single gen-server named gatekeeper that manages shared resources using
mutexes. Before a process uses a shared resource, it asks the gatekeeper to enter the corresponding
mutex. When the process no longer needs the resource or terminates, it tells the gatekeeper to
leave the mutex. A process may enter the same mutex multiple times, and it needs to leave the
mutex the same number of times. The gatekeeper breaks deadlocks by raising an exception in one
of the processes waiting for a mutex involved in a cyclic dependency chain.

The gatekeeper hooks system primitives $cp0, $np-compile, pretty-print, and sc-expand be-
cause they are not safe to be called from two processes at the same time (see the discussion of
the global winders list in Section 4.3). The $cp0 procedure uses resource $cp0, the $np-compile
procedure uses resource $np-compile, and so forth.

8.2 Theory of Operation

state The gatekeeper state is a list of <mutex> tuples, each of which has the following fields:
• resource: resource compared for equality using eq?

• process: process that owns resource

• monitor : monitor of process

• count: number of times process has entered this mutex

• waiters: ordered list of from arguments from handle-call for processes that are waiting to
enter this mutex

init The gatekeeper init procedure hooks the system primitives listed in the introduction so that
they use with-gatekeeper-mutex with a timeout of one minute, and it sets the current-expand
parameter to the hooked sc-expand procedure. The process traps exits so that terminate can
unhook the system primitives when the process is shut down. It returns an empty list of <mutex>
tuples.

103

terminate The gatekeeper terminate procedure unhooks the system primitives listed in the
introduction and sets the current-expand parameter to the unhooked sc-expand procedure.

handle-call The gatekeeper handle-call procedure handles the following messages:
• #(enter resource): Find mutex ∈ state where mutex.resource = resource.

If no such mutex exists, no-reply with (enter-mutex resource from ’() state).
If mutex.process = from.process, increment mutex.count, and reply ok with the updated state.
If (deadlock? from.process mutex state), reply #(deadlock resource) with state.
Otherwise, add from to the end of mutex.waiters, and no-reply with the updated state.

• #(leave resource): Find mutex ∈ state where mutex.resource = resource and mutex.process
= from.process.
If no such mutex exists, reply #(unowned-resource resource) with state.
If mutex.count > 1, decrement mutex.count, and reply ok with the updated state.
Otherwise, reply ok with (leave-mutex mutex state).

handle-cast The gatekeeper handle-cast procedure raises an exception on all messages.

handle-info The gatekeeper handle-info procedure handles messages matching the following
pattern:

• ‘(DOWN monitor _ _): Find mutex ∈ state where mutex.monitor = monitor . No-reply with
(leave-mutex mutex state).

(enter-mutex resource from waiters state) procedure
returns: updated state

The enter-mutex procedure calls (gen-server:reply from ’ok) to reply to the caller waiting
to enter the mutex. It adds a <mutex> tuple with resource = resource, process = from.process,
monitor = (monitor process), count = 1, and waiters = waiters to state.

(leave-mutex mutex state) procedure
returns: updated state

The leave-mutex procedure calls (demonitor&flush mutex.monitor). If mutex.waiters = (),
it returns (remq mutex state). Otherwise, it returns (enter-mutex mutex.resource (car mu-
tex.waiters) (cdr mutex.waiters) (remq mutex state)).

(deadlock? process mutex state) procedure
returns: a boolean

The deadlock? procedure returns #t if process would deadlock waiting for mutex. Let owner =
mutex.process. If owner = process, return #t. Otherwise, find the mutex waiting ∈ state where
#(owner _) ∈ waiting.waiters. If no such waiting exists, return #f. Otherwise, return (deadlock?
process waiting state).

104

8.3 Programming Interface

(gatekeeper:start&link) procedure
returns: #(ok pid) | #(error reason)

The gatekeeper:start&link procedure calls (gen-server:start&link ’gatekeeper).

(gatekeeper:enter resource timeout) procedure
returns: ok

The gatekeeper:enter procedure calls (gen-server:call ’gatekeeper #(enter resource) time-
out) to enter the mutex for resource. If it returns e ̸= ok, it raises exception e.

(gatekeeper:leave resource) procedure
returns: ok

The gatekeeper:leave procedure calls (gen-server:call ’gatekeeper #(leave resource)) to
leave the mutex for resource. If it returns e ̸= ok, it raises exception e.

(with-gatekeeper-mutex resource timeout body1 body2 . . .) syntax
expands to: ($with-gatekeeper-mutex ’resource timeout (lambda () body1 body2 . . .))

The with-gatekeeper-mutex form executes the body expressions in a dynamic context where the
calling process owns resource, which must be an identifier. The timeout expression specifies how
long the caller is willing to wait to enter the mutex for resource as defined by gen-server:call.
The internal $with-gatekeeper-mutex procedure is defined as follows:
(define ($with-gatekeeper-mutex resource timeout body)

(dynamic-wind
(lambda () (gatekeeper:enter resource timeout))
body
(lambda () (gatekeeper:leave resource))))

105

Chapter 9

Supervisor

9.1 Introduction

In a fault tolerant system, faults must first be observed and then acted upon. A supervisor
monitors child processes for failure and can be composed into a hierarchy to monitor for faults
within other supervisors.

The principles of supervisors and supervision hierarchies can be found in Joe Armstrong’s thesis [1]
or Programming Erlang—Software for a Concurrent World [2]. Documentation for Erlang’s su-
pervisor is available online [12]. Source code for the Erlang Open Telecom Platform can be found
online [8]. The source code for supervisor is part of stdlib and can be found in /lib/stdlib/src/-
supervisor.erl.

Patterns for Fault Tolerant Software [17] is a good reference for understanding the mindset of
creating fault tolerant systems.

9.2 Theory of Operation

A supervisor is a gen-server which is responsible for starting, stopping, and monitoring its child
processes. A supervisor observes its children, and when a failure occurs, restarts child processes.

A watcher is a supervisor which is configured to only observe the children. A watcher interface is
provided for convenience.

A supervisor can be configured to restart individual children when those children fail, or to restart
all children when any child fails. This is called the restart strategy. A strategy of one-for-one
indicates that when a child process terminates, it should be restarted; only that child process is
affected. A strategy of one-for-all indicates that when a child process terminates and should be
restarted, all other child process are terminated and then restarted.

A supervisor maintains a list of times of when a restart occurs. When a child fails and is to be
restarted, a timestamp is added to the restarts list. A maximum restart frequency is represented
as an intensity and a period of time. If more than intensity restarts occur in a period of time, the
supervisor terminates all child processes and then itself. This prevents the possibility of an infinite

106

cycle of child process termination and restarts.

A supervisor is started with a list of child specifications. These specifications are used to start child
processes from within the supervisor process during initialization.

Child specifications can be added to a supervisor at run time. These dynamic children will not be
automatically restarted if the supervisor itself terminates and is restarted.

state (define-state-tuple <supervisor-state> strategy intensity period children restarts)

• strategy defines how the supervisor processes a child termination: one-for-one or one-
for-all.

• intensity is the maximum restart intensity for all children within the period.

• period is the maximum restart period in milliseconds.

• children is a list of <child> tuples with the most recently started child first.

• restarts is an ordered list of times when restarts have occurred.

<child> tuple

(define-tuple <child> pid name thunk restart-type shutdown type)
pid stores the child process or #f. The remaining fields are copied from the child specification
described below.

init The init procedure validates the startup arguments and starts the initial child processes.
Invalid startup arguments cause the supervisor to fail to start. If any child fails to start, all started
children are terminated and the supervisor fails to start.

This process traps exits so that it can detect child exits, as well as the EXIT message from the
parent process.

An invalid argument results in a specific error reason that includes the invalid input.
• #(invalid-strategy strategy)

• #(invalid-intensity intensity)

• #(invalid-period period)

An invalid child specification during initialization will result in #(error #(start-specs reason))
where reason is one of the reasons listed in the programming interface below.

terminate The terminate procedure shuts each child process down in order (most recently added
first).

107

handle-call The handle-call procedure processes the following messages:
• #(start-child child-spec): Validates the child-spec, starts the child, adds it to the state,

and replies with #(ok pid) where pid is the new child process.
If a child specification of the same name already exists, #(error already-present) is re-
turned. If the child process was already started #(error #(already-started pid)) is re-
turned.
A successfully started child is linked to the supervisor, an event is fired to the event manager
to log the start, and #(ok pid) is returned. If the pid already occurs in the children list, then
start-child returns #(error #(duplicate-process pid)).
If the child process start function returns ignore, the child specification is added to the
supervisor, and the function returns #(ok #f).
If the child process start function returns #(error reason), then start-child returns #(er-
ror reason).
If the child process start function exits with reason, #(error reason) is returned.
If the child process start function returns other values #(error #(bad-return-value other))
is returned.

• #(restart-child name): Finds a child by name, verifies that it is not currently running,
then starts that child.
If the child process is already running, #(error running) is returned. If the child specifica-
tion does not exist, #(error not-found) is returned.
A successfully started child is linked to the supervisor, an event is fired to the event manager
to log the start, and #(ok pid) is returned. If the pid already occurs in the children list, then
restart-child returns #(error #(duplicate-process pid)).
If the child process start function returns ignore, the child specification is added to the
supervisor and the function returns #(ok #f).
If the child process start function returns #(error reason), then restart-child returns
#(error reason).
If the child process start function exits with reason, #(error reason) is returned.
If the child process start function returns other values #(error #(bad-return-value other))
is returned.

• #(delete-child name): Finds a child by name, verifies that it is not currently running,
then removes the child specification from the state and returns ok.
If the child process is running, #(error running) is returned. If the child specification does
not exist, #(error not-found) is returned.

• #(terminate-child name): Finds a child by name and terminates it if it is running. The
child pid is updated to #f and returns ok.
If the child specification does not exist, #(error not-found) is returned.

• get-children: Returns the state’s children field.

handle-cast The handle-cast procedure does not process any messages.

108

handle-info The handle-info procedure processes messages matching the following patterns:
• ‘(EXIT pid reason): Find pid in the children list and apply the restart strategy. An unknown

pid is ignored.
When the child specification restart-type is permanent or transient the current timestamp
is prepended to the restarts list. The list is then pruned based on the period. If the resulting
list length <= intensity, the supervisor continues. Otherwise, the supervisor terminates with
reason shutdown.

Internally, the (shutdown pid x) function kills child processes and returns the exit reason. This
function is used by terminate, terminate-child, and during a failed init. The following steps
are necessary to defend against a “naughty” child which unlinks from the supervisor.

• Monitor pid to protect against a child process which may have called unlink.

• Unlink pid to stop receiving EXIT messages from pid.

• An EXIT message may already exist for pid. If it does, then wait for the DOWN message, and
return the exit reason.

• If x = brutal-kill, kill pid with reason kill and wait for the DOWN message to determine
the exit reason.

• Otherwise, x is a timeout. kill pid with reason shutdown and wait for the DOWN message to
determine the exit reason. If a timeout occurs, kill pid with reason kill, and wait for the
DOWN message to determine the exit reason.

9.3 Design Decisions

Our initial implementation did not automatically link to child processes, but this led to unexpected
behavior when child processes neglected to link to the supervisor. Therefore, this implementation
links to all child processes.

9.4 Programming Interface

supervisor:start&link and supervisor:start-child use a child specification. A child specifi-
cation is defined as:

child-spec → #(name thunk restart-type shutdown type)

name is a symbol unique to the children within the supervisor.

thunk is a procedure that should spawn a process and link to the supervisor process, then return
#(ok pid) or #(error reason) or ignore. Typically, the thunk will call gen-server:start&link
which provides the appropriate behavior and return value.

restart-type is a symbol with the following meaning:
• A permanent child process is aways restarted.

• A temporary child process is never restarted.

109

• A transient child process is only restarted if it terminates with an exit reason other than
normal or shutdown.

• A watch-only child process is never restarted, and its child specification is removed from the
supervisor when it terminates.

shutdown defines how a child process should be terminated.
• brutal-kill indicates that the child process will be terminated using (kill pid kill).

• A fixnum > 0 represents a timeout. The supervisor will use (kill pid shutdown) and wait
for an exit signal. If no exit signal is received within the timeout, the child process will be
terminated using (kill pid kill). infinity can be used if and only if the type of the
process is supervisor.

The type is useful for validating the shutdown parameter, but is otherwise unused. It may be
useful in conjunction with supervisor:get-children to generate a tree of the running supervision
hierarchy.

type → supervisor
| worker

Invalid child specifications will result in specific error reasons which include the invalid input.
• #(invalid-name name)

• #(invalid-thunk thunk)

• #(invalid-restart-type restart-type)

• #(invalid-type type)

• #(invalid-shutdown shutdown)

• #(invalid-child-spec spec)

(supervisor:start&link name strategy intensity period start-specs) procedure
returns: #(ok pid) | #(error reason)

The supervisor:start&link procedure creates a new supervisor gen-server using gen-server:start&link.

name is the registered name of the process. For an anonymous server, #f may be specified.

strategy → one-for-one
| one-for-all

intensity → a fixnum >= 0

period → a fixnum > 0

start-specs → (child-spec . . .)

(supervisor:validate-start-specs specs) procedure
returns: #f | reason

110

The supervisor:validate-start-specs procedure takes a list of child specifications and checks
them in order. If it encounters an invalid child specification, supervisor:validate-start-specs
returns a reason suitable as input to exit-reason->english. Otherwise it returns #f.

(supervisor:start-child supervisor child-spec) procedure
returns: #(ok pid) | #(error reason)

This procedure dynamically adds the given child-spec to the supervisor which starts a child process.

The supervisor:start-child procedure calls (gen-server:call supervisor #(start-child child-
spec) infinity).

(supervisor:restart-child supervisor name) procedure
returns: #(ok pid) | #(error reason)

This procedure restarts a child process identified by name. The child specification must exist, and
the child process must not be running.

The supervisor:restart-child procedure calls (gen-server:call supervisor #(restart-child
name) infinity).

(supervisor:delete-child supervisor name) procedure
returns: ok | #(error reason)

This procedure deletes the child specification identified by name. The child process must not be
running.

The supervisor:delete-child procedure calls (gen-server:call supervisor #(delete-child
name) infinity).

(supervisor:terminate-child supervisor name) procedure
returns: ok | #(error reason)

This procedure terminates the child process identified by name. The child specification must exist,
but the child process does not need be running. Terminating a child does not cause a restart.

The supervisor:terminate-child procedure calls (gen-server:call supervisor #(terminate-
child name) infinity).

(supervisor:get-children supervisor) procedure
returns: a list of <child> tuples

This procedure returns the supervisor internal representation of child specifications.

The supervisor:get-children procedure calls (gen-server:call supervisor get-children in-
finity).

9.5 Published Events

A supervisor can notify the event manager of the same events as a gen-server, as well as the following
events.

111

event → <supervisor-error>
| <child-start>
| <child-end>

<supervisor-error> event

timestamp: the time the event occured
supervisor : the supervisor’s process id

error-context: the context in which the event occured
reason: the reason for the error
details: #f or a fault-condition containing the reason for the error

child-pid: the child’s process id
child-name: the child’s name

This event is fired when the supervisor fails to start its children, fails to restart its children, or
when it has exceeded the maximum restart frequency.

<child-start> event

timestamp: the time the event occured
supervisor : the supervisor’s process id

pid: the child’s process id
name: the child’s name

restart-type: the child’s restart-type
shutdown: the child’s shutdown

type: the child’s type

This event is fired after the child start procedure has returned a valid value.

<child-end> event

timestamp: the time the event occured
pid: the child’s process id

killed: 1 indicates the supervisor terminated the child, 0 otherwise
reason: the reason the child has terminated
details: #f or a fault-condition the reason the child has terminated

This event is fired after the supervisor terminates a child process, and after the supervisor detects
a failure in a child.

9.6 Watcher Interface

(watcher:start&link name) procedure
returns: #(ok pid) | #(error reason)

The watcher:start&link procedure creates a supervisor with a strategy of one-for-one, an
intensity of 0, a period of 1, and no children.

name is the registered name of the process. For an anonymous server, #f may be specified.

112

(watcher:start-child watcher name shutdown thunk) procedure
returns: #(ok pid) | #(error reason)

The watcher:start-child procedure calls (supervisor:start-child watcher #(name thunk
watch-only shutdown worker)).

(watcher:shutdown-children watcher) procedure
returns: unspecified

The watcher:shutdown-children procedure terminates and deletes each watch-only child in
watcher .

113

Chapter 10

Application

10.1 Introduction

The application is a single gen-server named application that manages the lifetime of the program.
It links to a process, typically the root supervisor, and shuts down the program when requested by
application:shutdown or when the linked process dies.

10.2 Theory of Operation

state The application state is the process returned by the starter of application:start. It
is typically the root supervisor. We refer to this variable as process. It may also be #f after
handle-info receives the exit message for the process.

init The application init procedure takes a starter procedure. It calls (starter) and checks the
return value r. If r = #(ok process), it links to process, traps exits so that it receives exit messages
from process and application:shutdown, and returns #(ok process). If r = #(error reason), it
returns #(stop reason).

terminate The application terminate procedure shuts down process. When process is not #f, it
kills process with reason shutdown and waits indefinitely for it to terminate. It flushes the console
output and error ports, ignoring any exceptions, and then calls (osi_exit exit-code), where exit-
code is initially 2 but set to the value passed to application:shutdown. In this way, the exit code
can be used to determine if the application shut down normally.

handle-call The application handle-call procedure raises an exception on all messages.

handle-cast The application handle-cast procedure raises an exception on all messages.

handle-info The application handle-info procedure handles messages matching the pattern:

114

• ‘(EXIT p reason): If p = process, return #(stop reason #f). Otherwise, return #(stop
reason process).

10.3 Programming Interface

(application:start starter) procedure
returns: ok

The application:start procedure calls (gen-server:start ’application starter). If it re-
turns #(ok _), application:start returns ok. If it returns #(error reason), application:start
calls (console-event-handler #(application-start-failed reason)) and (exit 1).

(application:shutdown [exit-code]) procedure
returns: unspecified

The application:shutdown procedure kills the application process with reason shutdown. The
exit-code defaults to 0, indicating normal shutdown. The procedure does not wait for the appli-
cation process to terminate so that it can be called from a process managed by the supervision
hierarchy without causing a deadlock on shutdown. If the application process does not exist,
application:shutdown flushes the console output and error ports, ignoring any exceptions, and
then calls (osi_exit exit-code).

115

Chapter 11

Database Interface

11.1 Introduction

The database (db) interface is a gen-server which provides a basic transaction framework to retrieve
and store data in a SQLite database. It provides functions to use transactions (directly and lazily).

The low-level SQLite interface can be found in the operating system interface design (see Chapter 3).

Other SQLite resources are available online [26] or in The Definitive Guide to SQLite [22].

11.2 Theory of Operation

The db gen-server serializes internal requests to the database. For storage and retrieval of data,
each transaction is processed in turn by a separate monitored worker process. The gen-server does
not block waiting for this process to finish so that it can maintain linear performance by keeping its
inbox short. The return value of the transaction is returned to the caller or an error is generated
without tearing down the gen-server.

To facilitate logging, the db gen-server can execute SQL statements asynchronously. It enqueues
SQL statements submitted via db:log and executes them by opening a transaction lazily when an
explicit transaction is enqueued, when a worker process exits normally, or when the db message
queue is empty and commit-delay has elapsed since enqueuing a db:log request in an empty
queue. To maintain responsiveness, each lazy transaction commits at most commit-limit db:log
requests. See db:options on page 120 for details. By default, each database is created with write-
ahead logging enabled to prevent write operations from blocking on queries made from another
connection.

SQLite has three types of transactions: deferred, immediate, and exclusive. This interface uses only
immediate transactions to simplify the handling of the SQLITE_BUSY error. Using immediate trans-
actions means that SQLITE_BUSY will only occur during BEGIN IMMEDIATE, BEGIN TRANSACTION,
COMMIT, and ROLLBACK1 statements. For each of these statements, when a SQLITE_BUSY occurs,
the code waits for a brief time, then retries the statement. The wait times in milliseconds follow

1Our testing showed that ROLLBACK returns SQLITE_BUSY only when a COMMIT for the same transaction returned
SQLITE_BUSY. This framework never causes that situation to occur, but it guards against it anyway.

116

the pattern (2 3 6 11 16 21 26 26 26 51 51 . #0=(101 . #0#)), and up to 500 retries are
attempted before exiting with #(db-retry-failed sql count). When the retry count is positive,
it is logged to the event manager along with the total duration with a <transaction-retry> event.

<transaction-retry> event

timestamp: timestamp from erlang:now
database: database filename
duration: duration in milliseconds

count: retry count
sql: query

The db gen-server uses the operating system interface to interact with SQLite. To prevent memory
leaks, each raw database and statement handle is wrapped in a Scheme record and registered with
a guardian via make-foreign-handle-guardian.

state (define-state-tuple <db-state> filename db cache queue worker)

• filename is the database specified when the server was started.

• db is the database record.

• cache is a hash table mapping SQL strings to SQLite prepared statements.

• queue is a queue of log and transaction requests.

• worker is the pid of the active worker or #f.

dictionary parameters

• current-database stores a Scheme record:

(define-record-type database
(fields
(immutable filename)
(immutable create-time)
(mutable handle)))

The handle is set to #f when the database is closed.

• statement-cache stores a Scheme record:

(define-record-type cache
(fields
(immutable ht)
(immutable expire-timeout)
(mutable waketime)
(mutable lazy-objects)))

117

The expire-timeout is the duration in milliseconds that entries live in the cache. This is
configurable using the cache-timeout option.
The waketime is the next time the cache will attempt to remove dead entries.
The hash table, ht, maps SQL strings to a Scheme record:

(define-record-type entry
(fields
(immutable stmt)
(mutable timestamp)))

When a SQL string is not found in the cache, osi_prepare_statement is used with the
current-database to make a SQLite statement. The raw statement handle is stored in a
Scheme record:

(define-record-type statement
(fields
(immutable database)
(immutable sql)
(immutable create-time)
(mutable handle)))

The statement is finalized using osi_finalize_statement when it is removed from the cache.
osi_close_database will finalize any remaining statements associated with the database.
When a SQL string is found in the cache, the entry’s timestamp is updated. Entries older
than 5 minutes will be removed from the cache.
Accessing the cache may exit with reason reason #(db-error prepare error sql), where
error is a SQLite error pair.
The lazy-objects list contains statement and marshaled bindings records created by lazy-
execute. These records are finalized when a transaction completes.

init The init procedure takes a filename, mode symbol, and an initialization procedure and
attempts to open that database and invoke the initialization procedure. The handle returned
from osi_open_database is wrapped in a database record that is registered with a foreign-handle
guardian using the type name databases. The foreign-handle guardian hooks the garbage collector
so that dead databases are closed even if the db gen-server fails to close them for any reason.

The gen-server traps exits so that it can close the database in its terminate procedure.

terminate The terminate flushes the queue and closes the database.

handle-call The handle-call procedure processes the following messages:
• #(transaction f): Add this transaction along with the from argument to handle-call to

the queue. Process the queue.

• filename: Return the database filename.

• stop: Flush the queue and stop with reason normal, returning stopped to the caller.

118

handle-cast The handle-cast procedure processes the following message:

• #(<log> sql mbindings): Add this tuple to the queue. Process the queue.

handle-info The handle-info procedure processes messages matching the following patterns:

• timeout: If the request queue is empty, remove old entries from the statement cache. Process
the queue.

• ‘(DOWN _ worker-pid reason e): The worker finished the previous request. If successful,
process the queue. Otherwise, flush the queue and stop with the fault e.

• ‘(DOWN _ _ _): Ignore the unexpected DOWN message. Process the queue.

• ‘(EXIT pid _ e): If the pid is the worker, ignore the message. Do not update the state. A
follow-up DOWN message will process the queue. Otherwise, flush the queue, and stop with the
fault e.

11.3 Design Decisions

There is a one-to-one relationship between a SQLite database handle and the db gen-server. For
clarity, the database handle and a SQLite statement cache are implemented in terms of Erlang
process dictionary parameters.

An alternate approach for logging was already explored where a transaction was not lazily opened.
Such an approach means that when a third party tool tries to access the database, it will hang
until the transaction is complete.

A commit threshold of 10,000 was chosen because it was large enough to minimize the cost of a
transaction but small enough to execute simple queries in less than one second.

Version 2.1.0 adds the concept of marshaled bindings. Bindings are copied into the C heap. The
resulting handle is wrapped in a Scheme record and registered with a guardian via make-foreign-
handle-guardian. The database worker process uses marshaled bindings to invoke sqlite:bulk-
execute when processing log messages.

11.4 Programming Interface

(db:start&link name filename mode [db-init])
(db:start&link name filename mode [db-options])

procedure

returns: #(ok pid) | #(error error)

The db:start&link procedure creates a new db gen-server using gen-server:start&link.

name is the registered name of the process. For an anonymous server, #f may be specified.

filename is the path to a SQLite database.

mode is one of the following symbols used to pass SQLite flags to osi_open_database:

• read-only uses the SQLite flag SQLITE_OPEN_READONLY.

119

• open uses the SQLite flag SQLITE_OPEN_READWRITE.

• create combines the SQLite flags (logor SQLITE_OPEN_READWRITE SQLITE_OPEN_CREATE).

The SQLite constants can be found in sqlite3.h or online [26].

db-init is a procedure that takes one argument, a database record instance. The return value is
ignored. When the mode is create and filename is not a special SQLite filename, the default
procedure sets journal_mode to “wal”; otherwise, no additional initialization occurs.

db-options can be defined using (db:options [option value] . . .). The following options may be
used:
option default description
init see right a procedure, (lambda (filename mode db) . . .), called when

initializing the gen-server, where db is a database record instance;
the default init procedure is equivalent to the default db-init
procedure described above

cache-timeout 5 minutes a nonnegative fixnum; the number of milliseconds before unref-
erenced statements expire from the statement cache

commit-delay 0 a nonnegative fixnum; the number of milliseconds to wait before
opening a lazy transaction

commit-limit 10,000 a positive fixnum; the maximum number of db:log entries to
include when opening a lazy transaction

The db:start&link procedure may return an error of #(db-error open error filename), where
error is a SQLite error pair.

(db:start name filename mode [db-init])
(db:start name filename mode [db-options])

procedure

returns: #(ok pid) | #(error error)

db:start behaves the same as db:start&link except that it does not link to the calling process.

(db:stop who) procedure
returns: stopped

The db:stop procedure calls (gen-server:call who stop infinity).

(with-db [db filename flags] body1 body2 . . .) syntax
expands to:
(let ([db (sqlite:open filename flags)])

(on-exit (sqlite:close db)
body1 body2 . . .))

The with-db macro opens the database in filename, executes the statements in the body, and closes
the database before exiting. This is a suitable alternative to starting a gen-server when you need
to query a database using a separate SQLite connection, and you do not need to cache prepared
SQL statements.

120

(db:expire-cache who) procedure
returns: unspecified

The db:expire-cache procedure enqueues a request to remove entries from the statement cache
regardless of their expiration time. BEGIN IMMEDIATE and COMMIT remain in the cache because
they are used frequently.

(db:filename who) procedure
returns: the database filename

The db:filename procedure calls (gen-server:call who filename).

(db:log who sql . bindings) procedure
returns: ok

The db:log procedure calls (gen-server:cast who #(<log> sql mbindings)), where sql is a
SQL string, bindings is a list of values to be bound in the query, and mbindings is the result of
(sqlite:marshal-bindings bindings). Because db:log does not wait for a reply from the server,
any error in processing the request will crash the server.

(db:transaction who f) procedure
returns: #(ok result) | #(error error)

The db:transaction procedure calls (gen-server:call who #(transaction f) infinity).

f is a thunk which returns a single value, result. execute, lazy-execute, and columns can be
used inside the procedure f .

result is the successful return value of f . Typically, this is a list of rows as returned by a SELECT
query.

error is the failure reason of f .

(transaction db body . . .) syntax
expands to:
(match (db:transaction db (lambda () body . . .))

[#(ok ,result) result]
[#(error ,reason) (throw reason)])

The transaction macro runs the body in a transaction and returns the result when successful and
exits when unsuccessful.

(execute sql . bindings) procedure
returns: a list of rows where each row is a vector of data in column order as specified in the sql
statement

execute should only be used from within a thunk f provided to db:transaction.

sql is mapped to a SQLite statement using the statement-cache. The bindings are then applied
using osi_bind_statement. The statement is then executed using osi_step_statement. The

121

results are accumulated as a list, and the statement is reset using osi_reset_statement to prevent
the statement from locking parts of the database.

This procedure may exit with reason #(db-error prepare error sql), where error is a SQLite
error pair.

(lazy-execute sql . bindings) procedure
returns: a thunk

lazy-execute should only be used from within a thunk f provided to db:transaction.

A new SQLite statement is created from sql using osi_prepare_statement so that the statement
won’t interfere with any other queries. The statement is added to the lazy-objects list of the
statement-cache and is finalized when the transaction completes. The bindings are marshaled via
sqlite:marshal-bindings. The resulting bindings record instance is added to the lazy-objects
list and applied using osi_bind_statement_bindings. A thunk is returned which, when called,
executes the statement using osi_step_statement. The thunk returns one row of data or #f.

This procedure may exit with reason #(db-error prepare error sql), where error is a SQLite
error pair.

(execute-sql db sql . bindings) procedure
returns: a list of rows where each row is a vector of data in column order as specified in the sql
statement

execute-sql should only be used for statements that do not need to be inside a transaction, such
as a one-time query.

sql is prepared into a SQLite statement for use with db, executed via sqlite:execute with the
specified bindings, and finalized.

This procedure may exit with reason #(db-error prepare error sql), where error is a SQLite
error pair.

(columns sql) procedure
returns: a vector of column names in order as specified in the sql statement

columns should only be used from within a thunk f provided to db:transaction.

sql is mapped to a SQLite statement using the statement-cache. The statement columns are then
retrieved using osi_get_statement_columns.

(parse-sql x [symbol->sql]) procedure
returns: two values: a query string and a list of syntax objects for the arguments

The parse-sql procedure is used by macro transformers to take syntax object x and produce
a query string and associated arguments according to the patterns below. When one of these
patterns is matched, the symbol->sql procedure is applied to the remaining symbols of the input
before they are spliced into the query string, as if by (format "~a" (symbol->sql sym)). By
default, symbol->sql is the identity function.

• (insert table ([column e1 e2 . . .] . . .))

122

The insert form generates a SQL insert statement. The table and column patterns are SQL
identifiers. Any e expression that is (unquote exp) is converted to ? in the query, and exp
is added to the list of arguments. All other expressions are spliced into the query string.

• (update table ([column e1 e2 . . .] . . .) where . . .)
The update form generates a SQL update statement. The table and column patterns are
SQL identifiers. Any e or where expression that is (unquote exp) is converted to ? in the
query, and exp is added to the list of arguments. All other expressions are spliced into the
query string.

• (delete table where . . .)
The delete form generates a SQL delete statement. The table pattern is a SQL identifier.
Any where expression that is (unquote exp) is converted to ? in the query, and exp is added
to the list of arguments. All other expressions are spliced into the query string.

(database? x) procedure
returns: a boolean

The database? procedure determines whether or not the datum x is a database record instance.

(database-create-time db) procedure
returns: a clock time in milliseconds

The database-create-time procedure returns the clock time from erlang:now when database
record instance db was created.

(database-filename db) procedure
returns: a string

The database-filename procedure returns the filename of database record instance db.

(database-count) procedure
returns: the number of open databases

The database-count procedure returns the number of open databases. This is the procedure
returned by (foreign-handle-count ’databases).

(print-databases [op]) procedure
returns: unspecified

The print-databases procedure prints information about all open databases to textual output
port op, which defaults to the current output port. This is the procedure returned by (foreign-
handle-print ’databases).

(statement? x) procedure
returns: a boolean

The statement? procedure determines whether or not the datum x is a statement record instance.

123

(statement-create-time stmt) procedure
returns: a clock time in milliseconds

The statement-create-time procedure returns the clock time from erlang:now when statement
record instance stmt was created.

(statement-database stmt) procedure
returns: a string

The statement-database procedure returns the database record instance of the statement record
instance stmt.

(statement-sql stmt) procedure
returns: a string

The statement-sql procedure returns the SQL string of the statement record instance stmt.

(statement-count) procedure
returns: the number of unfinalized statements

The statement-count procedure returns the number of unfinalized statements. This is the proce-
dure returned by (foreign-handle-count ’statements).

(print-statements [op]) procedure
returns: unspecified

The print-statements procedure prints information about all unfinalized statements to textual
output port op, which defaults to the current output port. This is the procedure returned by
(foreign-handle-print ’statements).

(bindings? x) procedure
returns: a boolean

The bindings? procedure determines whether or not the datum x is a marshaled bindings record
instance.

(bindings-count) procedure
returns: the number of live marshaled bindings records

The bindings-count procedure returns the number of live marshaled bindings records. This is the
procedure returned by (foreign-handle-count ’bindings).

(print-bindings [op]) procedure
returns: unspecified

The print-bindings procedure prints information about all live marshaled bindings records to
textual output port op, which defaults to the current output port. This is the procedure returned
by (foreign-handle-print ’bindings).

(sqlite:bind stmt bindings) procedure
returns: unspecified

124

The sqlite:bind procedure binds the variables in statement record instance stmt with the list of
bindings. It resets the statement before binding the variables.

(sqlite:bulk-execute stmts mbindings) procedure
returns: unspecified

The sqlite:bulk-execute procedure extracts the handles of the vectors stmts and mbindings and
calls osi_bulk_execute. stmts is a vector of statement record instances, and mbindings is a vector
of corresponding marshaled bindings obtained via sqlite:marshal-bindings.

(sqlite:clear-bindings stmt) procedure
returns: unspecified

The sqlite:clear-bindings procedure clears the variable bindings in statement record instance
stmt.

(sqlite:close db) procedure
returns: unspecified

The sqlite:close procedure closes the database associated with database record instance db.

(sqlite:columns stmt) procedure
returns: a vector of column names

The sqlite:columns procedure returns a vector of column names for the statement record instance
stmt.

(sqlite:execute stmt bindings) procedure
returns: a list of rows where each row is a vector of data in column order

The sqlite:execute procedure binds any variables in statement record instance stmt and then
calls (sqlite:step stmt) repeatedly to build the resulting list of rows. If bindings is a marshaled
bindings record instance, then sqlite:execute calls osi_bind_statement_bindings to bind vari-
ables in the statement. Otherwise it calls sqlite:marshal-bindings before binding the variables
and calls sqlite:unmarshal-bindings before returning. As a result, sqlite:execute accepts as
bindings a list, a vector, or a marshaled bindings record instance. When the procedure exits, it
resets the statement and clears the bindings.

(sqlite:expanded-sql stmt) procedure
returns: a string

The sqlite:expanded-sql procedure returns the SQL string expanded with the binding values
for the statement record instance stmt.

(sqlite:finalize stmt) procedure
returns: unspecified

The sqlite:finalize procedure finalizes the statement record instance stmt.

125

(sqlite:get-bindings bindings) procedure
returns: a vector or #f

The sqlite:get-bindings procedure returns a vector of the values marshaled in the bindings
record instance via sqlite:marshal-bindings, or #f if the record has been unmarshaled by
sqlite:unmarshal-bindings.

(sqlite:interrupt db) procedure
returns: a boolean

The sqlite:interrupt procedure interrupts any pending operations on the database associated
with database record instance db. It returns #t when the database is busy and #f otherwise.

(sqlite:last-insert-rowid db) procedure
returns: unspecified

The sqlite:last-insert-rowid procedure returns the rowid of the most recent successful insert
into a rowid table or virtual table on the database associated with database record instance db. It
returns 0 if no such insert has occurred.

(sqlite:marshal-bindings bindings) procedure
returns: a marshaled bindings record instance or #f

The sqlite:marshal-bindings procedure returns a marshaled bindings record instance for the
provided list or vector of bindings. The sqlite:marshal-bindings procedure registers the mar-
shaled bindings record with a foreign-handle guardian using the type name bindings.

(sqlite:open filename flags) procedure
returns: a database record instance

The sqlite:open procedure opens the SQLite database in file filename with flags specified by
sqlite3_open_v2 [26]. The constants SQLITE_OPEN_CREATE, SQLITE_OPEN_READONLY, and SQLITE_-
OPEN_READWRITE are exported from the (swish db) library. The sqlite:open procedure registers
the database record with a foreign-handle guardian using the type name databases.

(sqlite:prepare db sql) procedure
returns: a statement record instance

The sqlite:prepare procedure returns a statement record instance for the sql statement in the
database record instance db. The sqlite:prepare procedure registers the statement record with
a foreign-handle guardian using the type name statements.

(sqlite:sql stmt) procedure
returns: a string

The sqlite:sql procedure returns the unexpanded SQL string for the statement record instance
stmt.

(sqlite:step stmt) procedure
returns: a vector of data in column order or #f

126

The sqlite:step procedure steps the statement record instance stmt and returns the next row
vector in column order or #f if there are no more rows.

(sqlite:unmarshal-bindings mbindings) procedure
returns: unspecified

The sqlite:unmarshal-bindings procedure deallocates the memory associated with the mar-
shaled bindings record instance mbindings.

127

Chapter 12

Log Database

12.1 Introduction

The log database is a single gen-server named log-db that uses the database interface (see Chap-
ter 11) to log system events (see Chapter 7).

12.2 Theory of Operation

12.2.1 Initialization

The log-db gen-server handles startup and setup through two separate procedures. Startup uses
the db:start&link procedure to connect to the the SQLite log database specified by the (log-
file) parameter. It creates the file if it does not exist, but otherwise startup does not modify the
database.

Setup makes sure the schema of the log database has been created and is up-to-date. A unique
symbol identifying the schema version is stored in a table named version. This allows the software
to upgrade between known schema versions and to exit with an error when it encounters an un-
supported database version. These schema updates happen within a database transaction so that
if there is an error, the changes are rolled back.

Setup calls event-mgr:set-log-handler after updating the schema. This registers the log-db to
log system events. It also calls event-mgr:flush-buffer. This causes the event manager to stop
buffering startup events and the log-db to log the events that were buffered.

Setup sends a <system-attributes> event so that log-db receives and logs it. Finally, setup calls
db:expire-cache to release the schema definition queries.

Once the log-db gen-server has been setup, it continues to receive events from the system event
manager. It converts events that it recognizes into insertions to the log database. Events that it
does not recognize are ignored.

The tables are pruned using insert triggers to hold 90 days of information. To keep the insert
operations fast, the timestamp columns are indexed, and the pruning deletes no more than 10 rows

128

per insert. See make-swish-event-logger.

12.2.2 Extensions

An application typically produces events beyond those that are part of Swish and may wish to log
them in the same log database file where the Swish events are logged. The log-db design allows
for this type of extension.

The log-db:setup procedure takes a list of <event-logger> tuples or log-db:event-logger ob-
jects. Each logger represents an extension to the log database schema and contains two procedures,
setup and log. The log-db:setup procedure calls the setup procedure of logger to make sure
that its portion of the schema has been created and is up-to-date. Then, when log-db receives an
event, it calls the log procedure of each logger. If the event is recognized by that portion of the
schema, the log procedure inserts or updates data in the log database. Otherwise, the procedure
ignores that event.

Additionally, the version table does not store a single schema version. Instead, it stores schema
versions associated with names. The setup procedure of an <event-logger> uses an unique name
for its portion of the schema and the log-db:version procedure to retrieve and set its version.

The schema and logging for Swish events is implemented as an <event-logger> defined by swish-
event-logger and using the schema version name swish. An application that wishes to use this
logging must provide swish-event-logger in the list to log-db:setup. If the application wishes
to log Swish events in a different structure, it can omit the swish-event-logger and provide its
own logger with its own schema. However, doing so makes the application more brittle with respect
to changes in the Swish implementation.

12.3 Programming Interface

<event-logger> tuple
setup: procedure of no arguments that makes sure this portion of the schema is

created and up-to-date
log: procedure of one argument, an event, that logs the event if it recognizes it

and otherwise ignores it

(log-db:start&link [db-options]) procedure
returns: #(ok pid) | #(error error)

The log-db:start&link procedure creates a new db gen-server named log-db using db:start&link.
It uses the value of the (log-file) parameter as the path to the SQLite database and specifies
create mode. The optional db-options must be an object created by db:options.

(log-db:setup loggers) procedure
returns: ignore | #(error error)

The argument loggers is a list of <event-logger> tuples or objects constructed by log-db:event-
logger. The log-db:setup makes sure the log-db is setup to run by doing the following in
order.

129

1. Initialize or upgrade the database schema from within a db:transaction call. It does this
by calling the setup procedure of each logger.

2. Register a procedure with event-mgr:set-log-handler to have the log-db gen-server log
events it recognizes. When this procedure receives an event, it calls the log procedure of each
logger.

3. Call event-mgr:flush-buffer to stop buffering system events and apply the log handler to
the events already buffered.

4. Send a <system-attributes> event.

If everything succeeds, the procedure returns ignore. If either the db:transaction or event-
mgr:set-log-handler indicate an error, the procedure returns that error.

A logger may be configured via (log-db:event-logger [option value] . . .), which supports the
following options:

option default description
setup required a procedure of no arguments that makes sure this

portion of the schema is created and up-to-date
log required a procedure of one argument, an event, that logs

the event if it recognizes it and otherwise ignores
it

tolerate-fault? (lambda (event) #f) a procedure of one argument, an event, that re-
turns true if event-mgr should tolerate the fault
in log for that event or false if event-mgr should
kill log-db

(log-db:version name [version]) procedure

name: symbol identifying the schema
version: string specifying the version of the schema

When called with one argument, log-db:version retrieves the version associated with name from
the database and returns it as a string. It returns #f if no version associated with name is stored
in the database.

When called with two arguments, it stores version as the version associated with name in the
database.

(log-db:get-instance-id) procedure
returns: a string

log-db:setup associates a globally unique identifier with the database file. The log-db:get-
instance-id function caches and returns that identifier.

(make-swish-event-logger [prune-max-days prune-limit]) property

The make-swish-event-logger procedure returns an <event-logger> tuple that defines the
schema for Swish events. It uses the name swish to store its schema version. The optional prune-

130

max-days and prune-limit arguments are passed to create-prune-on-insert-trigger when ini-
tializing the Swish event log tables. The default prune-max-days is 90. The default prune-limit is
10.

swish-event-logger property

The swish-event-logger is an <event-logger> tuple created by calling (make-swish-event-
logger).

(create-table name
(field type . inline)
. . .)

syntax

expands to: (execute "create table if not exists . . . ")

The create-table syntax describes the schema of a single table and expands into a call to execute
to create the table if no table with that name already exists. The name of the table, name, and
of each field, field, are converted from Scheme to SQL identifiers by replacing hyphen characters
with underscores and eliminating any non-alphanumeric and non-underscore characters. The SQL
definition of each field is produced by joining the converted field name, the type and any additional
inline arguments into a space separated string.

(define-simple-events create handle
(name clause . . .)
. . .)

syntax

expands to: A definition of the create and handle procedures

The define-simple-events syntax is used to log tuple types by inserting a row into a table with
the same name and the same fields. Each name is a tuple type. Each clause is a valid create-table
clause for one of the fields in that tuple type.

It defines create as a procedure of 0 arguments that consists of a (create-table name clause
. . .) for each tuple in the define-simple-events. This means that the name of the tuple type
and each field are converted to SQL names by the create-table syntax.

It defines handle as a procedure of 1 argument, an event. If the event is one of the tuple types
in the define-simple-events, it calls db:log with an insert statement applying coerce to each
value. If the event is unrecognized, it returns #f.

(coerce x) procedure
returns: a Scheme object

The argument x is a Scheme object mapped to a SQLite value.

131

type transformation
string string
bytevector bytevector
number number, if it fits in 64 bits
symbol symbol->string
date format-rfc2822
JSON object json:object->string
process global-process-id
condition a string representing a JSON object with the following fields:

message containing (exit-reason->english x) and
stacks containing (map stack->json (exit-reason->stacks x))

continuation-condition a string containing #(error reason stack) where the stack is obtained
from dump-stack

coerce passes #f through unmodified which SQLite interprets as NULL. Other values are converted
to string using write.

(create-prune-on-insert-trigger table column max-days limit) procedure
returns: unspecified

The create-prune-on-insert-trigger procedure should be called only within a thunk f provided
to db:transaction. It creates a temporary trigger that prunes, after an insert, up to limit rows of
the specified table where the erlang:now timestamp in column is older than max-days. max-days
must be a nonnegative fixnum, and limit must be a positive fixnum. To keep insert operations fast,
column should be indexed.

(stack->json k [max-depth]) procedure
returns: a JSON object

The stack->json procedure renders the stack of continuation k as a JSON object by calling walk-
stack. The return value may contain the following keys:

type "stack"
depth the depth of the stack
truncated if present, the max-depth at which the stack dump was truncated
frames if present, a list of JSON objects representing stack frames

A stack frame may contain the following keys:

type "stack-frame"
depth the depth of this frame
source if present, a source object for the return point
procedure-source if present, a source object for the procedure containing the return point
free if present, a list of JSON objects representing free variables

A source object x with source file descriptor sfd is represented by a JSON object containing the
following keys:

bfp (source-object-bfp x)
efp (source-object-efp x)
path (source-file-descriptor-path sfd)
checksum (source-file-descriptor-checksum sfd)

132

A free variable with value val is represented by a JSON object containing the following keys:

name a string containing the variable name or its index
value the result of (format "~s" val)

(json-stack->string [op] x) procedure
returns: see below

The two argument form of json-stack->string prints the stack represented by JSON object x
to the textual output port op. The single argument form of json-stack->string prints the stack
represented by JSON object x to a string output port and returns the resulting string. In either
case, the printed form resembles that generated by dump-stack except that source locations are
given as file offsets rather than line and character numbers.

12.4 Published Events

<system-attributes> event

timestamp: timestamp from erlang:now
date: date from current-date

software-info: JSON object from software-info
machine-type: (symbol->string (machine-type))

computer-name: computer name from osi_get_hostname
os-pid: the operating-system process ID for the Swish process

os-system: (<uname> system (get-uname))
os-release: (<uname> release (get-uname))
os-version: (<uname> version (get-uname))

os-machine: (<uname> machine (get-uname))
os-total-memory: (osi_get_total_memory)

The <system-attributes> event is sent exactly once, when log-db:setup is called.

133

Chapter 13

System Statistics

13.1 Introduction

The system uses a single gen-server named statistics to periodically query statistics about the
system, such as memory usage.

13.2 Theory of Operation

When the statistics gen-server starts, it posts a <statistics> event with reason = startup.
Every five minutes thereafter, it posts a <statistics> event with reason = update. If the
computer sleeps or hibernates, the gen-server posts a <statistics> event with reason = suspend.
When the computer awakens, the gen-server posts a <statistics> event with reason = resume.
When the gen-server terminates, it posts a <statistics> event with reason = shutdown.

The <statistics> event is handled by the log-db gen-server (see Chapter 12), which adds the
data to the statistics table in the log database.

13.3 Programming Interface

(statistics:start&link) procedure
returns: #(ok pid) | #(error error)

The statistics:start&link procedure creates a new gen-server named statistics using gen-
server:start&link. It then posts a <statistics> event with reason = startup.

(statistics:resume) procedure

The statistics:resume procedure casts a message to the statistics gen-server that causes it to
publish a <statistics> event with reason = resume. This procedure is called from the operating
system interface via the top-level-value $resume.

134

(statistics:suspend) procedure

The statistics:suspend procedure casts a message to the statistics gen-server that causes
it to publish a <statistics> event with reason = suspend. This procedure is called from the
operating system interface via the top-level-value $suspend.

13.4 Published Events

<statistics> event

timestamp: timestamp from erlang:now
date: date from current-date

reason: startup, update, suspend, resume, or shutdown
bytes-allocated: Scheme heap size from bytes-allocated

current-memory-bytes: Scheme heap size including overhead, from current-memory-bytes
maximum-memory-bytes: maximum Scheme heap size including overhead, since startup or since the

last <statistics> event, from maximum-memory-bytes
osi-bytes-used: C heap size from osi_get_bytes_used
sqlite-memory: SQLite memory used from osi_get_sqlite_status

sqlite-memory-highwater : SQLite memory highwater since last event from osi_get_sqlite_status
foreign-handles: JSON object with types and counts reported by count-foreign-handles

cpu: CPU time in seconds since last event
real: elapsed time in seconds since last event

bytes: Scheme heap bytes allocated since last event
gc-count: number of garbage collections since last event

gc-cpu: CPU time in seconds of garbage collections since last event
gc-real: elapsed time in seconds of garbage collections since last event

gc-bytes: Scheme heap bytes reclaimed since last event
os-free-memory: current free memory from osi_get_free_memory

Each time a <statistics> event is emitted, the maximum memory bytes value is reset via reset-
maximum-memory-bytes!.

The JSON object in the foreign-handles field contains at least the following entries:

bindings number of live marshaled SQLite bindings
databases number of open SQLite databases
osi-ports number of open osi-ports
path-watchers number of open path watchers
statements number of unfinalized SQLite statements
tcp-listeners number of open TCP/IP listeners

This event is sent every five minutes while the statistics gen-server is running.

135

Chapter 14

HTTP Interface

14.1 Introduction

The HTTP interface provides a basic implementation of the Hypertext Transfer Protocol [14] and
the WebSocket Protocol [13]. The programming interface includes procedures for the HyperText
Markup Language (HTML) version 5 [19] and JavaScript Object Notation (JSON) [3].

14.2 Theory of Operation

The HTTP interface provides http:add-file-server to listen for connections on a TCP port and
serve files from a directory and http:add-server to serve content via a user-defined procedure.
These procedures configure the app-sup-spec to include one or more web servers in the supervision
hierarchy that is started by app:start.

Both http:add-file-server and http:add-server are implemented in terms of http:configure-
server, which defines a supervisor that manages the listener gen-server, dispatcher processes, cache
gen-servers, and evaluator processes. Internally, the listener starts a cache manager process to sup-
port evaluating and serving files. The dispatcher starts a connection process to manage protocol
details. This structure is illustrated in Figure 14.1.

The HTTP supervisor provided via http:configure-server is configured one-for-one with up to
10 restarts within 10 seconds.

The listener gen-server awaits TCP connections using listen-tcp and accepts them using accept-
tcp. For each TCP connection, the listener uses its supervisor to spawn and link a dispatcher
process that reads each request, calls the URL handler configured for that listener, and repeats
until the connection closes. The listener closes the associated output port when the dispatcher
exits.

Each dispacher process spawns a connection gen-server. The connection is responsible for reading
and parsing requests in a timely manner. A connection server reads from its input port until a CR
LF occurs. Well-formed input is converted to a <request> tuple. The HTTP request header is
then read and associated with the request. If the connection takes more than request-timeout
milliseconds to parse a request, the dispatcher fires an exception, and the TCP connection is closed.

136

HTTP
supervisor

listener

dispatcher

cache

evaluator

cache
manager

connection

Figure 14.1: HTTP supervision tree

The dispatcher logs the specific request, validates that the requested path does not include “..”, and
invokes the URL handler provided by the listener.

For forms, the URL handler is responsible for checking the request method and reading form content
with http:call-with-form. Any unread content as determined by Content-Length is ignored.

After a request is processed, the current process and connection can be reused. Unless the Connec-
tion header specifies close, the system reads another request from the input port after skipping
any unread content from the current request.

14.2.1 URL handler and Media Type handler

Using http:add-server or http:configure-server configures a web server to serve content via
a URL handler that may be compiled into the Swish application.

A URL handler is a procedure that should return #t when it processes a request, and #f otherwise.

To allow future extension without change to application code, the HTTP interface provides http:url-
handler to define a handler which exposes the following implicit variables:

conn: a connection process
request: a <request> tuple
header : a JSON object
params: a JSON object

http:call-url-handler can be used to invoke a handler, and http:compose-url-handlers chains
a sequence of handlers together.

A media type handler is a procedure that takes a file extension as input and returns a media type
or #f. The default media type handler always returns #f.

137

14.2.2 Default file handling

Using http:add-file-server or http:configure-file-server configures a web server to serve
files from a directory. These procedures generate a URL handler by calling http:make-default-
file-url-handler. This handler asks the cache manager gen-server for a cache responsible for
the given directory.

The cache manager gen-server maintains the mapping of the top-level web directory to a cache
gen-server. If a cache does not exist for the given path, a new cache gen-server is created.

A cache gen-server stores URL handlers and provides a mapping from file extension to media type.
It creates a directory watcher using watch-directory to invalidate the cache when anything in the
directory tree changes. It terminates after 5 minutes of inactivity.

The optional media-type-handler is configured via http:make-default-media-type-handler to
match the extension of filename case insensitively against an extension in the mime-types file of
the configured directory. Each line of mime-types has the form ("extension" . "Content-Type").

14.2.3 Dynamic Pages

A dynamic page is any file that is transformed before its content is sent to the browser. For example,
by setting the option file-transform to http:enable-dynamic-pages, a path that ends in “.ss”
containing a sequence of definitions followed by a sequence of expressions is wrapped in a URL
handler and evaluated by the eval system procedure. The page explicitly sends a response via
http:respond or http:respond-file.

In general, a cache gen-server resolves a URL to a file path and checks its internal state. If a
URL handler is unavailable, the gen-server calls the optional file-transform procedure passing
the absolute file path.

The file-transform procedure returns #f or a procedure. When it returns #f, the URL is
considered static and is sent directly over the connection using http:respond-file.

When it returns a procedure, the cache starts an evaluator process. The evaluator process calls
the procedure with the cache’s root directory and the absolute file path. The evaluator procedure
returns #f or a URL handler. The cache stores the URL handler.

14.2.4 WebSocket Protocol

The WebSocket Protocol enables bidirectional communication and is well supported by web browsers
and software platforms. The protocol utilizes message fragmentation and control frame messages.
The (swish websocket) library represents a WebSocket connection as a gen-server referred to as
a websocket.

The websocket gen-server manages message fragmentation, ping and pong control messages, and
sends messages to a separate process. The following messages are sent:

• #(ws:init ws): Indicates that the HTTP protocol upgrade to websocket is complete for
process ws and messages can be exchanged.

138

• #(ws:message ws message): Indicates that a message bytevector or string was received by
process ws.

• #(ws:closed ws code reason): Indicates that the websocket and underlying output port
is closed. The cause is indicated by the numeric status code. Status codes 1000 and 1001
are used to indicate normal exit reasons. The reason string may be useful for logging and
debugging but is not necessarily presentable to a user.

As a server, a URL handler can call ws:upgrade in tail position to switch to the WebSocket
Protocol.

A client establishes a connection to a server using ws:connect to connect and request usage of the
WebSocket Protocol.

14.3 Security

The HTTP interface is written in Scheme, and therefore buffer overrun exploits cannot be used
against the system.

User input should be carefully checked before calling eval or invoking a database query.

A URL which directs the system away from a cache’s root path using “..” could allow access to
system files. Therefore, the dispatcher explicitly rejects relative paths.

The HTTP interface limits incoming data to protect against large memory allocation that may
crash the application.

The HTTP interface allows individual form URL handlers to specify incoming data and file upload
limits to protect against large memory allocation and running out of disk space.

14.4 Programming Interface

<request> tuple

host: a string
method: a symbol

path: a decoded string
original-path: same as path

header : a decoded JSON object
params: a decoded JSON object

The original-path is used internally when redirecting the browser to a new location. If user code
copies the <request> tuple, it should not modify original-path.

(http:configure-server name port url-handler [options]) procedure
returns: a list of child specifications (see page 109)

139

name: a symbol for the listener gen-server or #f for an anonymous server
port: a fixnum 0 ≤ port ≤ 65535

url-handler : a procedure
options: see below

The http:configure-server procedure returns a list of supervisor child specifications that define
an HTTP server.

The specification defines a supervisor configured as one-for-one with up to 10 restarts every 10
seconds. The supervisor starts a listener gen-server. This supervisor is used to create dispatcher,
cache, and evaluator processes.

The listener is a gen-server registered as name. It accepts connections on the given TCP port and
processes them with url-handler .

The options can be defined using (http:options (option value) . . .). The following options may
be used:
option default description
request-limit 8,192 a positive fixnum; the maximum length in bytes

of the first line of an HTTP request
request-timeout 30,000 a positive fixnum; the maximum number of mil-

liseconds to wait to receive an HTTP request after
initial connection

response-timeout 60,000 a positive fixnum; the maximum number of mil-
liseconds to allow the server to send a response

header-limit 1,048,576 a positive fixnum; the maximum length in bytes
of the HTTP request headers

media-type-handler (lambda (ext) #f) a procedure; given a file extension returns the me-
dia type of the file or #f

file-search-extensions ’(".html") a list of strings; a cache process uses the list to
disambiguate URL paths to file system paths.

file-transform (lambda (path) #f) a procedure; a cache process calls this procedure
with a file path and expects an evaluator proce-
dure or #f (see §14.2.3)

validate-path http:valid-path? a predicate; the server raises an exception if the
<request> path does not satisfy this predicate.

(http:add-server arg . . .) syntax

The http:add-server macro expands to code that appends the result of (http:configure-server
arg . . .) to the app-sup-spec parameter.

(http:configure-file-server name port dir [options]) procedure
returns: a list of child specifications (see page 109)

The http:configure-file-server procedure defines an HTTP server that provides content from
the file-system rooted at dir .

The http:configure-file-server procedure calls http:configure-server with (http:make-
default-file-url-handler dir) as the URL handler. If the media-type-handler option is not

140

specified, it defaults to one constructed via (http:make-default-media-type-handler dir).

(http:add-file-server arg . . .) syntax

The http:add-file-server macro expands to code that appends the result of (http:configure-
file-server arg . . .) to the app-sup-spec parameter.

(http:make-default-file-url-handler dir) procedure
returns: a URL handler

The http:make-default-file-url-handler defines a URL handler that retrieves the cache re-
sponsible for the directory dir . It then looks up a URL handler from the cache for the given request.
If found, it calls the handler and flushes the output port. Otherwise, it returns #f.

(http:make-default-media-type-handler dir) procedure
returns: a media type handler

The http:make-default-media-type-handler defines a media type handler that retrieves the
cache responsible for the directory dir . It then requests the media type for the given file extension.
If found, the type is returned. Otherwise, it returns #f.

(http:url-handler body1 body2 . . .) syntax

The http:url-handler macro defines a URL handler procedure described in Section 14.2.1.

(http:call-url-handler handler) syntax

The http:call-url-handler macro invokes a URL handler, implicitly capturing variables in scope
as described in Section 14.2.1.

(http:compose-url-handlers handlers) procedure
returns: a URL handler

The http:compose-url-handlers procedure defines a URL handler that takes a list of handlers
and invokes each handler, in order, until one returns #t. Otherwise, it returns #f.

If a URL handler returns #f but sends output to the output-port, exception http-side-effecting-
handler is raised.

(http:get-port-number listener) procedure
returns: the listener gen-server TCP port number

The http:get-port-number procedure calls (gen-server:call listener ’get-port-number). If
the listener’s port was configured to be zero, the operating system will choose an available port
number. http:get-port-number uses listener-port-number to retrieve the actual port number
that the server is listening on.

141

(http:find-header name header) procedure
returns: a string | #f

The http:find-header procedure returns the value associated with name in JSON object header
if present and #f otherwise. If name is a symbol, the lookup uses eq?. If name is a string, it is first
mapped to a lower-case symbol before performing the lookup. Otherwise, the exception #(bad-arg
http:find-header name) is raised.

(http:get-header name header) procedure
returns: a string

The http:get-header procedure returns the value associated with name in JSON object header if
present and raises exception #(http-invalid-header name) otherwise. If name is a symbol, the
lookup uses eq?. If name is a string, it is first mapped to a lower-case symbol before performing
the lookup. Otherwise, the exception #(bad-arg http:get-header name) is raised.

(http:get-content-length header) procedure
returns: an unsigned integer | #f

The http:get-content-length procedure returns the unsigned integer value associated with
content-length in JSON object header if present and #f otherwise. It raises exception #(http-
invalid-content-length value) if the value string does not represent an unsigned integer.

(http:find-param name params) procedure
returns: a string | #f

The http:find-param procedure returns the value associated with name in JSON object params
if present and #f otherwise. If name is a symbol, the lookup uses eq?. If name is a string,
it is converted to a symbol before performing the lookup. Otherwise, the exception #(bad-arg
http:find-param name) is raised.

(http:get-param name params) procedure
returns: a string

The http:get-param procedure returns the value associated with name in JSON object params if
present and raises exception #(http-invalid-param name) otherwise. If name is a symbol, the
lookup uses eq?. If name is a string, it is converted to a symbol before performing the lookup.
Otherwise, the exception #(bad-arg http:get-param name) is raised.

(http:read-header ip limit) procedure
returns: a JSON object

The http:read-header procedure reads from the binary input port ip until it reads a blank line.
It creates a JSON object where the key is a symbol formed from the down-cased characters before
the first colon and the value is a string formed from the characters that remain after skipping white
space. Duplicate message-header fields result in a single entry where the value is a comma-separated
list.

Reading beyond limit raises exception http-input-limit-exceeded.

Failure to find a colon on any given line raises exception http-invalid-header.

142

(http:read-status ip limit) procedure
returns: number | #f

The http:read-status procedure reads the HTTP response status line from the binary input port
ip and returns the status code as a number if well formed and #f otherwise. Reading beyond limit
raises exception http-input-limit-exceeded.

(http:write-status op status) procedure
returns: unspecified

The http:write-status procedure writes the HTTP response status line to the binary output
port op.

Unless status is a fixnum and 100 ≤ status ≤ 599, the exception #(bad-arg http:write-status
status) is raised.

According to HTTP [14] the status line includes a human-readable reason phrase. The grammar
shows that it can in fact be zero characters long; therefore, the reason phrase is not included in
this implementation.

(http:write-header op header-alist) procedure
returns: unspecified

The http:write-header procedure writes the HTTP header-alist and trailing CR LF to the binary
output port op.

header-alist is an association list whose keys and values are strings. If any of its keys are not strings,
exception #(bad-arg http:write-header header-alist) is raised.

(http:respond conn status header-alist [content [timeout]]) procedure
returns: #t

The http:respond procedure writes the HTTP status and header-alist to the connection conn
using http:write-status and http:write-header, adding Content-Length to header-alist in
situations described below. When Cache-Control is not present in header-alist, it is added with
value no-cache. When content is a bytevector, it is written. Then the output port is flushed.

The default value of content is #f, which specifies that the Content-Length header is not added.
When status is 100–199, 204, or 304, the Content-Length header is not added, and if content is a
bytevector, it must be empty. Otherwise, the Content-Length header is added with the length of
content.

The default value of timeout is (response-timeout).

(http:respond-file conn status header-alist filename [timeout]) procedure
returns: #t

The http:respond-file procedure writes the HTTP status and header-alist to the connection
conn using http:write-status and http:write-header, adding Content-Length to header-alist.
The Cache-Control header is added, if it is not already present, with value max-age=3600. The
Content-Type header is added, if it is not already present, by calling the media-type-handler.

143

The content of the file is streamed to the output port so that the file does not need to be loaded
into memory. The output port is flushed.

The default value of timeout is (response-timeout).

(http:call-with-form conn header content-limit file-limit files f [timeout]) procedure
returns: see below

The http:call-with-form procedure checks JSON object header for a content-type of multipart/form-
data or application/x-www-form-urlencoded. It parses form name/value pairs into a JSON
object. After parsing the form data, the function f is called with the JSON object. After f returns,
all uploaded files are deleted, and the return value is passed to the caller.

Because http:call-with-form is used inside a URL handler after the <http-request> event has
been fired, the specific form data is not logged. Applications should consider the sensitivity of
submitted data before logging.

When files are sent and the form variable name appears in the files list, the file is stored in (tmp-
dir), and the JSON value is a JSON object with type="file" and filename=filename.

For example, a form sending the variables name, rank, and image might look like:
{

"name": "Steve R",
"rank": "Captain",
"image":
{

"type": "file",
"filename": filename

}
}

Name/value pairs count against content-limit while file data counts against file-limit. An exception
is raised when either limit is exceeded.

The default value of timeout is (request-timeout).

(http:call-with-ports conn f [timeout]) procedure
returns: see below

The http:call-with-ports procedure ignores any current connection state and calls f in the
connection process with the connection’s input and output ports. Running f in the connection
process allows the caller to timeout when input is unavailable. The return value of f is returned
to the caller.

The default value of timeout is 5000 milliseconds.

(http:switch-protocol proc) procedure
returns: see below

When used in a URL handler, http:switch-protocol returns a special value to control the dis-
patcher loop. The dispatcher detaches from the connection process and calls proc with the input
and output ports.

144

(http:percent-encode s) procedure
returns: an encoded string

The http:percent-encode procedure writes the characters A–Z, a–z, 0–9, hyphen, underscore, pe-
riod, and ˜. Other characters are converted to a % prefix and two digit hexadecimal representation.

(http:enable-dynamic-pages path) procedure
returns: a procedure | #f

If the file extension of path is “.ss”, the http:enable-dynamic-pages procedure returns the
http:eval-dynamic-page procedure. Otherwise, it returns #f.

(http:eval-dynamic-page root-dir abs-path) procedure
returns: a URL handler

The http:eval-dynamic-page procedure wraps a http:url-handler around the contents of a
file, extends the syntax with the constructs described in Section 14.4.1, and calls the eval system
procedure.

(http:valid-path? path) procedure
returns: boolean

The http:valid-path? procedure checks that the path from a <request> is a string that begins
with / and contains no ".." path elements when decomposed as a filesystem path. On Windows
this procedure treats both / and \ as path separators since some filesystem operations accept both.

14.4.1 Dynamic Page Constructs

A dynamic page exposes the same implicit variables as a URL handler described in Section 14.2.1
as well as the following additional syntax.

(find-param key) syntax

Implementation: The find-param macro expands to (http:find-param key params).

(get-param key) syntax

Implementation: The get-param macro expands to (http:get-param key params).

(http:include "filename") syntax

The http:include construct includes the definitions from filename, a path relative to the root path
of the cache if filename begins with a forward slash, else relative to the directory of the current file.

Implementation: The http:include macro calls read-file and read-bytevector to retrieve a
list of expressions that are spliced in at the same scope as the use of http:include. The splicing
is done with let-syntax so that any nested http:include expressions are processed relative to
the directory of filename.

145

14.4.2 WebSocket Protocol

(ws:upgrade conn request process [options]) procedure
returns: see below

The ws:upgrade procedure checks the header of the request tuple and upgrades the calling process
to a gen-server that speaks the WebSocket protocol. The connection conn is used during the opening
handshake to report errors. As it runs, the gen-server sends the messages defined in Section 14.2.4
to the given process. It raises an exception upon termination (see gen-server:enter-loop).

The options are defined with (ws:options (option value) . . .). The following options may be
used:
option default description
fragmentation-size 1,048,576 a positive fixnum or #f to disable; the maximum

length in bytes of a single message payload
maximum-message-size 16,777,216 a positive fixnum; the maximum length in bytes

of the total payload for a single message that can
be read from input

ping-frequency 30,000 a positive fixnum; the maximum number of mil-
liseconds since last receiving a message before is-
suing a ping request

pong-timeout 5,000 a positive fixnum; the maximum number of mil-
liseconds to wait for a reply to a ping before failing

(ws:connect hostname port request process [options]) procedure
returns: a websocket gen-server process

The ws:connect procedure initiates a TCP connection to hostname on the given port number and
issues an upgrade for the request uniform resource identifier string. It then spawns and returns a
gen-server process that sends the messages defined in Section 14.2.4 to the given process.

The options are the same as defined for ws:upgrade.

(ws:send server message)
(ws:send! server message)

procedure

returns: ok

The ws:send procedure uses gen-server:cast to transmit the bytevector or string message to the
websocket process or registered name server . The ws:send! procedure is like ws:send except that
it does not copy bytevector messages, but may instead destructively update them to apply a mask
for transmission.

(ws:close server) procedure
returns: ok

The ws:close procedure uses gen-server:cast to close the websocket process or registered name
server .

14.4.3 HyperText Markup Language

146

(html:encode s)
(html:encode op s)

procedure

returns: see below

The html:encode procedure converts special character entities in string s.

input output
" "
& &
< <
> >

The single argument form of html:encode returns an encoded string.

The two argument form of html:encode sends the encoded string to the textual output port op.

(html->string x)
(html->string op x)

procedure

returns: see below

The html->string procedure transforms an object into HTML. The transformation, H, is described
below:
x H(x)
() nothing
#!void nothing
string E(string)
number number
(begin pattern . . .) H(pattern). . .
(cdata string . . .) [!CDATA[string. . .]]
(html5 [(@ attr . . .)] pattern . . .) <!DOCTYPE html><html A(attr) . . . >H(pattern). . . </html>
(raw string . . .) string. . .
(script [(@ attr . . .)] string . . .) <script A(attr) . . . >string. . . </script>
(style [(@ attr . . .)] string . . .) <style A(attr) . . . >string. . . </style>
(tag [(@ attr . . .)] pattern . . .) <tag A(attr) . . . >H(pattern). . . </tag>
(void-tag [(@ attr . . .)]) <void-tag A(attr) . . . >

E denotes the html:encode function.

For the html5 tag, if there is no attr with lang as its key, then H acts as if the attr (lang "en")
were specified.

A void-tag is one of area, base, br, col, embed, hr, img, input, keygen, link, menuitem, meta,
param, source, track, or wbr. A tag is any other symbol.

The attribute transformation, A, is described below, where key is a symbol:

attr A(attr)
#!void nothing
(key) key
(key string) key="E(string)"
(key number) key="number"

The single argument form of html->string returns an encoded HTML string.

147

The two argument form of html->string sends the encoded HTML string to the textual output
port op.

Input that does not match the specification causes a #(bad-arg html->string x) exception to
be raised.

(html->bytevector x) procedure
returns: a bytevector

The html->bytevector procedure calls html->string on x using a bytevector output port transcoded
using (make-utf8-transcoder) and returns the resulting bytevector.

14.4.4 JavaScript Object Notation

This implementation translates JavaScript types into the following Scheme types:

JavaScript Scheme
true #t
false #f
null #\nul
string string
number number
array list
object hashtable mapping symbols to values

This implementation does not range check values to ensure that a JavaScript implementation can
interpret the data.

(json:extend-object ht [key value] . . .) syntax

The json:extend-object construct adds the key / value pairs to the hashtable ht using hashtable-
set!. Each key is a literal identifier or an unquoted expression ,e that evaluates to a symbol. The
resulting expression returns ht.

(json:make-object [key value] . . .) syntax

The json:make-object construct expands into a call to json:extend-object with a new hashtable.

(json:object? x) procedure
returns: a boolean

The json:object? procedure determines whether or not the datum x is an object created by
json:make-object.

(json:cells ht) procedure
returns: a vector

The json:cells procedure returns a vector containing the cells of the underlying hashtable.

148

(json:size ht) procedure
returns: an integer

The json:size procedure returns the number of cells in the underlying hashtable.

(json:delete! ht path) procedure
returns: unspecified

The json:delete! procedure expects path to be a symbol or a non-empty list of symbols. If path
is a symbol, then json:delete! is equivalent to hashtable-delete!. Otherwise, json:delete!
follows path as it descends into the nested hashtable ht, treating each element as a key into the
hashtable reached by traversing the preceding elements. When json:delete! reaches the final key
in path, it calls hashtable-delete! to remove the association for that key in the hashtable reached
at that point. If any key along the way does not map to a hashtable, json:delete! has no effect.

(json:ref ht path default) procedure
returns: the value found by traversing path in ht, default if none

The json:ref procedure expects path to be a symbol or a non-empty list of symbols. If path
is a symbol, then json:ref is equivalent to hashtable-ref. Otherwise, json:ref follows path
as it descends into the nested hashtable ht, treating each element as a key into the hashtable
reached by traversing the preceding elements. When json:ref reaches the final key in path, it calls
hashtable-ref to retrieve the value of that key in the hashtable reached at that point. If any key
along the way does not map to a hashtable, or if the final hashtable does not contain the final key,
json:ref returns default.

(json:set! ht path value) procedure
returns: unspecified

The json:set! procedure expects path to be a symbol or a non-empty list of symbols. If path is
a symbol, then json:set! is equivalent to hashtable-set!. Otherwise, json:set! follows path
as it descends into the nested hashtable ht, treating each element as a key into the hashtable
reached by traversing the preceding elements. When json:set! reaches the final key in path, it
calls hashtable-set! to set that key in the hashtable reached at that point. If any key along
the way does not map to a hashtable, json:set! installs an empty hashtable at that key before
proceding. If path is malformed at some point, json:set! may still mutate hashtables along the
valid portion of the path before reporting an error.

(json:update! ht path procedure default) procedure
returns: unspecified

The json:update! procedure expects path to be a symbol or a non-empty list of symbols. If path
is a symbol, then json:update! is equivalent to hashtable-update!. Otherwise, json:update!
follows path as it descends into the nested hashtable ht, treating each element as a key into the
hashtable reached by traversing the preceding elements. When json:update! reaches the final key
in path, it calls hashtable-update! to update that key in the hashtable reached at that point. If
any key along the way does not map to a hashtable, json:update! installs an empty hashtable
at that key before proceding. If path is malformed at some point, json:update! may still mutate
hashtables along the valid portion of the path before reporting an error.

149

(json:read ip [custom-inflate]) procedure
returns: a Scheme object or the eof object

The json:read procedure reads characters from the textual input port ip and returns an appro-
priate Scheme object. When json:read encounters a JSON object, it builds the corresponding
hashtable and calls custom-inflate to perform application-specific conversion. By default, custom-
inflate is the identity function.

The following exceptions may be raised:

• invalid-surrogate-pair

• unexpected-eof

• #(unexpected-input data input-position)

(json:write op x [indent] [custom-write]) procedure
returns: unspecified

The json:write procedure writes the object x to the textual output port op in JSON format. By
default, json:write sorts the keys of JSON objects using string<?, after converting the symbolic
keys to strings. This sort order provides stable output. The json:key<? parameter may be used to
alter or disable key sorting. Scheme fixnums, bignums, and finite flonums may be used as numbers.

When indent is a non-negative fixnum, the output is more readable by a human. List items and
key/value pairs are indented on individual lines by the specified number of spaces. When indent is
0, a newline is added to the end of the output. The default indent of #f produces compact output.

The optional custom-write procedure may intervene to handle lists and hashtables differently or
to handle objects that have no direct JSON counterpart. If custom-write does not handle a given
object, it should return false to let json:write proceed normally. The custom-write procedure is
called with four arguments: the textual output port op, the Scheme object x, the current indent
level, and a writer procedure wr that should be used to write the values of arbitrary Scheme
objects. The wr procedure is equivalent to (lambda (op x indent) (json:write op x indent
custom-write)).

The default value of custom-write is the value stored in the json:custom-write process-parameter.

If an object cannot be formatted, #(invalid-datum x) is raised.

(json:write-object op indent wr [key value] . . .) syntax
returns: #t

Given a textual output port op, an indent level, and a writer procedure wr , the json:write-object
construct writes a JSON object with the given key / value pairs to op. By default, json:write-
object sorts the keys using string<? on the string values of the symbols. To alter or disable key
sorting, see the json:key<? parameter.

Each key must be a distinct symbol. The wr procedure takes op, an object x, and an indent level
just like the wr procedure that is passed to json:write’s custom-write procedure.

The following are equivalent, provided the keys are symbols and json:key<? has its default value.

150

(begin (json:write op (json:make-object [key value] . . .) indent) #t)
(json:write-object op indent json:write [key value] . . .)
The latter trades code size and compile time for run-time efficiency. At compile time, json:write-
object sorts the keys and preformats the strings that will separate values.

(json:pretty x [op]) procedure
returns: unspecified

The json:pretty procedure formats an object x to the optional textual output port op in a
human-readable form. The object is indented and keys are sorted using natural-string-ci<?.
The default value of op is (current-output-port).

Calling (json:pretty x) is roughly equivalent to the following:
(parameterize ([json:key<? natural-string-ci<?])

(json:write (current-output-port) x 0))

json:custom-write parameter
returns: a procedure or #f

The json:custom-write process-parameter determines the default custom-write argument for
json:write and the other JSON output procedures.

json:key<? parameter
returns: a boolean or a predicate for comparing two strings

The json:key<? parameter determines whether and how json:pretty, json:write, and json:write-
object sort keys when writing JSON objects. If set to #f, keys are not sorted and the output order
is arbitrary. Otherwise, the output is sorted by obtaining a string for each key via symbol->string
and comparing those strings using the predicate specified by json:key<?. If json:key<? is set to
#t, which is the default, then json:pretty sorts with natural-string-ci<? while json:write and
json:write-object sort with string<?. To affect the output of json:write-object, json:key<?
must be set to the desired value at expand time.

(json:object->bytevector x [indent] [custom-write]) procedure
returns: a bytevector

The json:object->bytevector procedure calls json:write on x with the optional indent and
custom-write, if any, using a bytevector output port transcoded using (make-utf8-transcoder)
and returns the resulting bytevector.

(json:bytevector->object x [custom-inflate]) procedure
returns: a Scheme object

The json:bytevector->object procedure creates a bytevector input port on x, calls json:read
with the optional custom-inflate, if any, and returns the resulting Scheme object after making sure
the rest of the bytevector is only whitespace.

(json:object->string x [indent] [custom-write]) procedure
returns: a JSON formatted string

151

The json:object->string procedure creates a string output port, calls json:write on x with the
optional indent and custom-write, if any, and returns the resulting string.

(json:string->object x [custom-inflate]) procedure
returns: a Scheme object

The json:string->object procedure creates a string input port on x, calls json:read with the
optional custom-inflate, if any, and returns the resulting Scheme object after making sure the rest
of the string is only whitespace.

(json:write-structural-char x indent op) procedure
returns: the new indent level

The json:write-structural-char procedure writes the character x at an appropriate indent
level to the textual output port op. The character should be one of the following JSON structural
characters: [] { } : ,

This procedure is intended for use within custom writers passed in to json:write and, for perfor-
mance, it does not check its input arguments.

14.5 Published Events

<http-request> event

timestamp: timestamp from erlang:now
pid: handler process

host: the IP address of the client
method: <request> method

path: <request> path
header : a JSON object
params: a JSON object

152

Chapter 15

Command Line Interface

15.1 Introduction

The command-line interface (cli) provides parsing of command-line arguments as well as consistent
usage of common options and display of help.

15.2 Theory of Operation

Many programs parse command-line arguments and perform actions based on them. The cli library
helps to make programs that process arguments and display help simple and consistent. Command-
line arguments are parsed left to right in a single pass. Command-line interface specifications, or
cli-specs, are used for parsing and error checking a command line, displaying one-line usage, and
displaying a full help summary.

Arguments may be preceded by a single dash (-), a double dash (--), or no dash at all. A single
dash precedes short, single character arguments. The API does not allow numbers as they could
be mistaken as a negative numerical value supplied to another argument. A double dash precedes
longer, more descriptive arguments, --repl for example. Positional arguments are not preceded
by any dashes. As arguments with dashes are consumed, the remaining arguments are matched
against the positional specifications in order.

Argument specifications include a type such as: bool, count, string, and list. A set of bool and
count arguments can be specified together (-abc is equivalent to -a -b -c). Arguments of type
list collect values in left to right order.

The API does not directly support sub-commands and alternate usage help text. These can be
implemented using the primitives provided. The implementations of swish-build and swish-test
provide examples of advanced command-line handling.

In the following REPL transcript, we define example-cli using cli-specs. We then set the
command-line-arguments parameter as they would be for an application. Calling parse-command-
line-arguments returns a procedure, opt, which we can use to access the parsed command-line
values. Finally, we use display-help to display the automatically generated help.

153

> (define example-cli
(cli-specs
default-help
[verbose -v count "indicates verbosity level"]
[output -o (string "<output>") "print output to an <output> file"]
[repl --repl bool "start a repl"]
[files (list "<file>" ...) "a list of input files"]))

> (command-line-arguments '("-vvv" "-o" "file.out" "file.in"))
> (define opt (parse-command-line-arguments example-cli))
> (opt 'verbose)
3
> (opt 'output)
"file.out"
> (opt 'files)
("file.in")
> (display-help "sample" example-cli)
Usage: sample [-hv] [-o <output>] [--repl] <file> ...

-h, --help display this help and exit
-v indicates verbosity level
-o <output> print output to an <output> file
--repl start a repl
<file> ... a list of input files

Putting the parts together into sample.ss, we have a working example albeit incomplete.

#!/usr/bin/env swish

(define example-cli
(cli-specs
default-help
[verbose -v count "indicates verbosity level"]
[output -o (string "<output>") "print output to an <output> file"]
[repl --repl bool "start a repl"]
[files (list "<file>" ...) "a list of input files"]))

(let ([opt (parse-command-line-arguments example-cli)])
(when (opt 'help)

(display-help "sample" example-cli)
(exit 0))

(let ([verbosity (or (opt 'verbose) 0)])
(when (> verbosity 0)

(printf "showing verbosity level: ~a~n" verbosity)))
(when (opt 'repl)

(new-cafe)))

154

15.3 Programming Interface

(cli-specs
[default-help]
(name [short] [long] type help

[(conflicts conflicts)]
[(requires requires)]
[(usage [visibility] [how])])

. . .)

syntax

expands to:

a list of <arg-spec> tuples

The cli-specs macro simplifies the creation of the <arg-spec> tuples. The <arg-spec> name
field uniquely identifies a specification, and is used to retrieve parsed argument values and check
constraints.

name: a symbol to identify the argument
short: a symbol of the form -x, where x is a single character, see below
long: a symbol of the form --x, where x is a string
type: see Figure 15.1
help: a string or list of strings that describes the argument

conflicts: a list of <arg-spec> names
requires: a list of <arg-spec> names

To specify -i or -I for short, use |-i| and |-I| respectively to prevent Chez Scheme from reading
them as the complex number 0 − 1i.

Type Result
bool #t
count a positive integer
(string x) a string
(list x) a list of one item
(list x ...) a list of one or more items up to the next argument
(list . x) a list of the rest of the arguments

For each type where x is specified, x is a string that is used in the help display.

Figure 15.1: Command-line argument types

The list types can support multiple x arguments, for instance (list "i1" "i2") would specify
a list of two arguments.

visibility → show
| hide
| fit

When printing the help usage line, a visiblility of show means the argument must be displayed.
hide forces the argument to be hidden. fit displays the argument if it fits on the line.

155

how → short
| long
| opt
| req

The how expands into input of the format-spec procedure according to Figure 15.2.

Keyword Expands into:
short (opt (and short args))
long (opt (and long args))
opt (opt (and (or short long) args))
req (req (and (or short long) args))

Figure 15.2: cli-specs how field

For options with short or long specified, fit and opt are the defaults. For other options, show and
req are the defaults.

conflicts is a list of specification names that prevent this argument from processing correctly. When
multiple command-line arguments are specified that are in conflict, an exception is raised.

requires is a list of other specification names that are necessary for this argument to be processed
correctly. Unless all the required command-line arguments are specified, an exception is raised.

The conflicts, requires, and usage clauses may be specified in any order.

(display-help exe-name specs [args] [op]) procedure
returns: unspecified

The display-help procedure is equivalent to calling display-usage with a prefix of "Usage:"
followed by display-options.

(display-options specs [args] [op]) procedure
returns: unspecified

For each specification in specs, the display-options procedure renders two columns of output to
op, which defaults to the current output port. The first column renders the short and long form
of the argument with its additional inputs. The second column renders the <arg-spec> help field
and will automatically wrap if the help-wrap-width is exceeded.

If an args hash table is specified, the specified value appended to the second column. This is useful
for displaying default or current values.

(display-usage prefix exe-name specs [width] [op]) procedure
returns: unspecified

The display-usage procedure displays the first line of help output to op, which defaults to the
current output port. It starts with prefix and exe-name then attempts to fit specs onto the line
using format-spec. When the line will exceed width characters, some arguments may collapse to
[options].

A width of #f defaults the line width to help-wrap-width.

156

(format-spec spec [how]) procedure
returns: a string

The format-spec procedure is responsible rendering spec as a string as specified by how. format-
spec can display dashes in front of arguments, ellipses on list types, and brackets around optional
arguments. A how of #f defaults to the <arg-spec> usage field.

how Return value:
short "-x" if spec short is x, else #f
long "--x" if spec long is x, else #f
args The spec type is evaluated as follows:

type Return value:
bool #f
count #f
(string x) "x"
(list x) "x"
(list x ...) "x . . . "
(list . x) "x . . . "

(or how . . .) Recur and use the first non-#f
(and how . . .) Recur and concatenate all non-#f values
(opt how) Recur and surround the result with square brackets []

if non-#f
(req how) Recur and use the result

help-wrap-width parameter
value: a positive fixnum

The help-wrap-width parameter specifies the default width for display-usage and display-
options.

(parse-command-line-arguments specs [ls] [fail]) procedure
returns: a procedure

The parse-command-line-arguments procedure processes the elements of ls from left to right in
a single pass. As it scans each x in ls, the parser must find a suitable s within specs. If a suitable s
cannot be found, the parser reports an error by calling fail. Based on the type of s, the parser may
consume additional elements following x. The type of s determines what data the parser records
for that argument. When s is satisfied, the parser continues scanning the remaining elements of ls.

The parser returns a procedure p that accepts zero or one argument. When called with no argu-
ments, p returns a hash table that maps the name of each s found while processing ls to the data
recorded for that argument. When called with the name of an element s in specs, p returns the
data, if any, recorded for that name in the hash table or else #f. If a particular s was not found
while processing ls, the internal hash table has no entry for the name of s and p returns #f when
given that name. If called with a name that is not in specs, p raises an exception.

The following table summarizes the parser’s behavior.

157

<arg-spec> type extra arguments consumed / recorded return value of (p name)
bool none #t
count none an exact positive integer
(string x) one a string
(list x0 . . . xn ...) n or more, up to the next option a list of strings
(list x0 . . . xn . rest) at least n and all remaining a list of strings

By default ls is the value of (command-line-arguments) and fail is a procedure that applies
errorf to its arguments. Providing a fail procedure allows a developer to accumulate parsing
errors without necessarily generating exceptions.

<arg-spec> tuple

name: a symbol to use as the key of the output hash table
type: see Figure 15.1

short: #f | a character
long: #f | a string
help: a string or list of strings describing argument

conflicts: a list of <arg-spec> names
requires: a list of <arg-spec> names

usage: a list containing one visibility symbol and a format-spec how expression

158

Chapter 16

Parallel

16.1 Introduction

The parallel interface provides an API for spawning multiple worker processes and collecting results
in a fault-tolerant system. Because Swish is single-threaded using lightweight processes, not all
programs benefit from multiplexing using this mechanism. Programs that are I/O bound or spawn
external OS processes benefit the most.

16.2 Theory of Operation

The (swish parallel) library implements a kernel capable of spawning multiple processes, man-
aging their lifetimes, and collecting results. The processes involved are the caller, the kernel, and
the workers. The caller is the user code intending to multiplex the work. The kernel spawns and
manages the worker processes. Each worker process is responsible for one unit of user-code work.
These processes are shown in Figure 16.1.

The desired behavior here is a uni-directional link, which is not native to Swish. To accomplish
this, the caller starts the kernel using spawn&link, and the kernel enables process-trap-exit.
An exit signal generated by a worker propagates to other workers, but does not signal the caller.
An exit signal from the caller will propagate to the workers, and the kernel will complete normally.

The kernel is configured using parallel:options. The kernel starts up to start-limit worker
processes using spawn&link in some order1. As each worker completes, a new one starts. When
all the workers complete, the kernel returns an API-specific value.

The kernel also supports a timeout for the entire parallel operation. When the timeout expires,
all remaining workers are killed with the reason timeout, and an exception is thrown in the caller
process.

Because the caller is not killed by the kernel, it acts as an observer of the kernel’s behavior. As
such, when an event-mgr process exists, the caller publishes <child-start> and <child-end>
events described in Section 9.5. Because the potential number of workers may be high, the worker

1Because workers are independent processes, start order does not guarantee execution order. Control of start
order provides a mechanism to help detect and test for assumptions and errors in user code.

159

Caller Kernel

Worker 1

Worker 2

Worker 3

...

Worker N

Figure 16.1: Parallel kernel

processes are not logged.

16.3 Programming Interface

Kernel options can be defined using (parallel:options [option value] . . .). The following op-
tions may be used:

option default description
start-limit (most-

positive-
fixnum)

a positive fixnum; the number of workers allowed to start and
run concurrently

order random a symbol, one of random, left, or right
timeout infinity infinity or a nonnegative fixnum; the number of milliseconds

the workers are allowed to execute before failing the entire oper-
ation

(parallel () e . . .)
(parallel ([option value] . . .) e . . .)
(parallel ,options e . . .)

syntax

The parallel construct invokes each expression e, . . . concurrently and returns a list of the
resulting values. Expressions may run concurrently unless start-limit is 1.

The (parallel ([option value] . . .) e . . .) form constructs a copy of the default options, over-
riding each specified option with the specified value.

160

The (parallel ,options e . . .) form allows you to specify an expression for the parallel:options
object described in Section 16.3.

(parallel! () e . . .)
(parallel! ([option value] . . .) e . . .)
(parallel! ,options e . . .)

syntax

The parallel! construct behaves as parallel but returns an unspecified value.

(parallel:execute [options] thunks) procedure
returns: a list of results

The parallel:execute procedure takes a list of thunks (procedures of no arguments), each of
which returns a single value. parallel:execute invokes the thunks concurrently and returns a list
of the resulting values. Each procedure may run concurrently unless start-limit is 1.

The optional options argument is defined using parallel:options described in Section 16.3.

(parallel:execute! [options] thunks) procedure
returns: unspecified

The parallel:execute! procedure behaves as parallel:execute but returns an unspecified value.

(parallel:for-each [options] procedure list1 list2 . . .) procedure
returns: unspecified

The parallel:for-each procedure works like the parallel:map procedure except that it does not
accumulate and return a list of values. Each application of procedure may run concurrently unless
start-limit is 1.

The optional options argument is defined using parallel:options described in Section 16.3.

(parallel:map [options] procedure list1 list2 . . .) procedure
returns: a list of results

The parallel:map procedure works like Chez Scheme’s map procedure. Each application of proce-
dure may run concurrently unless start-limit is 1.

The optional options argument is defined using parallel:options described in Section 16.3.

(parallel:vector-map [options] procedure vector1 vector2 . . .) procedure
returns: a vector of results

The parallel:vector-map procedure works like Chez Scheme’s vector-map procedure. Each
application of procedure may run concurrently unless start-limit is 1.

The optional options argument is defined using parallel:options described in Section 16.3.

161

Bibliography

[1] Joe Armstrong. Making reliable distributed systems in the presence of software errors. PhD
thesis, The Royal Institute of Technology, Stockholm, Sweden, 2003.

[2] Joe Armstrong. Programming Erlang—Software for a Concurrent World. The Pragmatic
Bookshelf, 2007.

[3] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format. RFC 7159
(Proposed Standard), March 2014. http://www.ietf.org/rfc/rfc7159.txt.

[4] Carl Bruggeman, Oscar Waddell, and R. Kent Dybvig. Representing Control in the Pres-
ence of One-Shot Continuations. In Proceedings of the ACM SIGPLAN ’96 Conference on
Programming Language Design and Implementation, pages 99–107, 1996.

[5] C99 — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?
title=C99&oldid=813613099.

[6] R. Kent Dybvig. Chez Scheme Version 9 User’s Guide. Cadence Research Systems, 2017.
https://cisco.github.io/ChezScheme/csug9.5/csug.html.

[7] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic Abstraction in Scheme. Lisp
and Symbolic Computation, 5:83–110, 1992.

[8] Erlang. http://www.erlang.org/.

[9] Erlang dict module. http://www.erlang.org/doc/man/dict.html.

[10] Erlang gen_server module. http://www.erlang.org/doc/man/gen_server.html.

[11] Erlang queue module. http://www.erlang.org/doc/man/queue.html.

[12] Erlang supervisor module. http://www.erlang.org/doc/man/supervisor.html.

[13] Ian Fette and Alexey Melnikov. The WebSocket Protocol. RFC 6455, December 2011. https:
//rfc-editor.org/rfc/rfc6455.txt.

[14] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and
Routing. RFC 7230 (Proposed Standard), June 2014. http://www.ietf.org/rfc/rfc7230.
txt.

[15] Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly, second edition, 2002.

162

http://www.ietf.org/rfc/rfc7159.txt
https://en.wikipedia.org/w/index.php?title=C99&oldid=813613099
https://en.wikipedia.org/w/index.php?title=C99&oldid=813613099
https://cisco.github.io/ChezScheme/csug9.5/csug.html
http://www.erlang.org/
http://www.erlang.org/doc/man/dict.html
http://www.erlang.org/doc/man/gen_server.html
http://www.erlang.org/doc/man/queue.html
http://www.erlang.org/doc/man/supervisor.html
https://rfc-editor.org/rfc/rfc6455.txt
https://rfc-editor.org/rfc/rfc6455.txt
http://www.ietf.org/rfc/rfc7230.txt
http://www.ietf.org/rfc/rfc7230.txt

[16] William G. Griswold and Gregg M. Townsend. The design and implementation of dynamic
hashing for sets and tables in icon. Software Practice and Experience, 23(4):351–367, April
1993.

[17] Robert Hanmer. Patterns for Fault Tolerant Software. Wiley Publishing, 2007.

[18] C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular ACTOR Formalism for Artificial
Intelligence. In Proceedings of the Third IJCAI, pages 235–245, Stanford, MA, 1973.

[19] Ian Hickson. HTML 5, October 2014. http://www.w3.org/TR/2014/REC-html5-20141028/.

[20] Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing Control in the Presence of
First-Class Continuations. In Proceedings of the ACM SIGPLAN ’90 Conference on Program-
ming Language Design and Implementation, pages 66–77, 1990.

[21] libuv. http://libuv.org/.

[22] Michael Owens. The Definitive Guide to SQLite. Apress, 2006.

[23] E. Resnick. Internet Message Format, April 2001. http://www.ietf.org/rfc/rfc2822.txt.

[24] The Base16, Base32, and Base64 data encodings, 2006. https://tools.ietf.org/html/
rfc4648.

[25] Dorai Sitaram. pregexp: Portable Regular Expressions for Scheme and Common Lisp, 2005.
https://ds26gte.github.io/pregexp/.

[26] SQLite. http://www.sqlite.org/.

[27] Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl. O’Reilly, third edition,
2000.

163

http://www.w3.org/TR/2014/REC-html5-20141028/
http://libuv.org/
http://www.ietf.org/rfc/rfc2822.txt
https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc4648
https://ds26gte.github.io/pregexp/
http://www.sqlite.org/

List of Figures

1.1 Supervision Tree . 8

3.1 Service callbacks. 26

4.1 Pattern Grammar . 47

7.1 Event flow . 99

14.1 HTTP supervision tree . 137

15.1 Command-line argument types . 155

15.2 cli-specs how field . 156

16.1 Parallel kernel . 160

164

Index

<arg-spec>, 158
<child-end>, 112
<child-start>, 112
<child>, 107
<event-logger>, 129
<gen-server-debug>, 95
<gen-server-terminating>, 95
<handler>, 99
<http-request>, 152
<request>, 139
<statistics>, 135
<supervisor-error>, 112
<system-attributes>, 133
<transaction-retry>, 117
<stat>, 32
<uname>, 27

add-finalizer, 51
add-mat, 19
app-exception-handler, 15
app-sup-spec, 15
app:config, 12
app:config-filename, 12
app:name, 12
app:path, 13
app:shutdown, 15
app:start, 15
application, 114

handle-call, 114
handle-cast, 114
handle-info, 114
init, 114
state, 114
terminate, 114

application:shutdown, 115
application:start, 115
arg-check, 53

bad-arg, 53
base-dir, 13
base64-decode-bytevector, 77
base64-encode-bytevector, 77
base64url-decode-bytevector, 77
base64url-encode-bytevector, 77
binary->utf8, 59
bindings-count, 124
bindings?, 124
bytevector->hex-string, 77

catch, 44
child specification, 109
cli-specs, 155
close-digest, 76
close-osi-port, 59
close-path-watcher, 59
close-tcp-listener, 59
coerce, 131
columns, 122
complete-io, 53
connect-tcp, 60
console-event-handler, 53
count-foreign-handles, 52
create-prune-on-insert-trigger, 132
create-table, 131
ct:join, 73
ct:string-append, 73
current-digest-provider, 75
current-exit-reason->english, 72

data-dir, 13
database guardian, 126
database-count, 123
database-create-time, 123
database-filename, 123
database?, 123
db

165

handle-call, 118
handle-cast, 119
handle-info, 119
init, 118
parameters, 117
state, 117
terminate, 118

db:expire-cache, 120
db:filename, 121
db:log, 121
db:options, 120
db:start, 120
db:start&link, 119
db:stop, 120
db:transaction, 121
dbg, 54
default-digest-provider, 75
default-timeout, 19
define-foreign, 18
define-match-extension, 49
define-simple-events, 131
define-state-tuple, 94
define-syntactic-monad, 78
define-tuple, 57
demonitor, 45
demonitor&flush, 45
digest-count, 77
digest-provider-name, 75
directory?, 60
display-help, 156
display-options, 156
display-usage, 156
DOWN, 46
dump-stack, 54

ends-with-ci?, 73
ends-with?, 73
erlang:now, 56
error pair, 23
event-loop, 41
event-mgr

handle-call, 99
handle-info, 100
init, 99
state, 98
terminate, 99

event-mgr:add-handler, 100
event-mgr:flush-buffer, 101

event-mgr:notify, 101
event-mgr:set-log-handler, 101
event-mgr:start&link, 100
execute, 121
execute-sql, 122
EXIT, 46
exit-reason->english, 72
exit-reason->stacks, 55

filter-files, 60
finalizer, 41, 51
find-param, 145
fold-files, 60
for-each-mat, 20
force-close-output-port, 60
foreign-handle-count, 52
foreign-handle-print, 52
format-rfc2822, 73
format-spec, 156

gatekeeper, 41, 103
<mutex>, 103
deadlock?, 104
enter-mutex, 104
handle-call, 104
handle-cast, 104
handle-info, 104
init, 103
leave-mutex, 104
state, 103
terminate, 104

gatekeeper:enter, 105
gatekeeper:leave, 105
gatekeeper:start&link, 105
gen-server:call, 93
gen-server:cast, 93
gen-server:debug, 93
gen-server:enter-loop, 92
gen-server:reply, 93
gen-server:start, 92
gen-server:start&link, 92
get-bytevector-exactly-n, 61
get-datum/annotations-all, 61
get-file-size, 61
get-hash, 76
get-param, 145
get-real-path, 61
get-registered, 43

166

get-source-offset, 61
get-stat, 61
get-uname, 61
global-process-id, 50

handle-call, 96
handle-cast, 96
handle-info, 97
hash!, 76
hash->hex-string, 76
help-wrap-width, 157
hex-string->hash, 76
hook-console-input, 61
ht:delete, 71
ht:fold, 71
ht:is?, 72
ht:keys, 72
ht:make, 72
ht:ref, 72
ht:set, 72
ht:size, 72
html->bytevector, 148
html->string, 147
html:encode, 146
http:add-file-server, 141
http:add-server, 140
http:call-url-handler, 141
http:call-with-form, 144
http:call-with-ports, 144
http:compose-url-handlers, 141
http:configure-file-server, 140
http:configure-server, 139
http:enable-dynamic-pages, 145
http:eval-dynamic-page, 145
http:find-header, 141
http:find-param, 142
http:get-content-length, 142
http:get-header, 142
http:get-param, 142
http:get-port-number, 141
http:include, 145
http:make-default-file-url-handler,

141
http:make-default-media-type-handler,

141
http:options, 139
http:percent-encode, 144
http:read-header, 142

http:read-status, 142
http:respond, 143
http:respond-file, 143
http:switch-protocol, 144
http:url-handler, 141
http:valid-path?, 145
http:write-header, 143
http:write-status, 143

include-line, 14
informative-exit-reason?, 101
inherited-parameters, 56
init, 95
io-error, 62
isolate-mat, 18

join, 73
json-stack->string, 133
json:bytevector->object, 151
json:cells, 148
json:custom-write, 151
json:delete!, 149
json:extend-object, 148
json:key<?, 151
json:make-object, 148
json:object->bytevector, 151
json:object->string, 151
json:object?, 148
json:pretty, 151
json:read, 149
json:ref, 149
json:set!, 149
json:size, 148
json:string->object, 152
json:update!, 149
json:write, 150
json:write-object, 150
json:write-structural-char, 152

keyboard-interrupt, 56
kill, 45

lazy-execute, 122
limit-stack, 55
limit-stack?, 55
link, 46
list-directory, 62
listen-tcp, 62
listener, 41

167

listener guardian, 43, 62
listener-address, 62
listener-create-time, 63
listener-port-number, 63
listener?, 63
load-results, 20
log-db:event-logger, 130
log-db:get-instance-id, 130
log-db:setup, 129
log-db:start&link, 129
log-db:version, 130
log-file, 13

make-digest-provider, 75
make-directory, 63
make-directory-path, 63
make-fault, 44
make-fault/no-cc, 45
make-foreign-handle-guardian, 51
make-inherited-parameter, 56
make-osi-input-port, 63
make-osi-output-port, 63
make-process-parameter, 56
make-swish-event-logger, 130
make-swish-sup-spec, 15
make-utf8-transcoder, 63
mat, 18
mat:add-annotation!, 19
match, 47
match-define, 48
match-let*, 48
mon, 40
monitor, 46
monitor?, 46
msg, 40

natural-string-ci<?, 73
natural-string<?, 73
normalize-exit-reason, 101

on-exit, 57
open-binary-file-to-append, 65
open-binary-file-to-read, 65
open-binary-file-to-replace, 65
open-binary-file-to-write, 65
open-digest, 76
open-fd-port, 64
open-file, 64
open-file-port, 64

open-file-to-append, 65
open-file-to-read, 65
open-file-to-replace, 65
open-file-to-write, 65
open-utf8-bytevector, 65
osi-port, 40
osi-port guardian, 64
osi-port guardian, 43, 60, 64, 69
osi-port-closed?, 66
osi-port-count, 66
osi-port-create-time, 66
osi-port-name, 66
osi-port?, 66
osi_add_callback1, 23
osi_add_callback2, 23
osi_add_callback3, 24
osi_add_callback_list, 23
osi_bind_statement, 36
osi_bind_statement_bindings, 36
osi_bulk_execute, 38
osi_chmod, 31
osi_clear_statement_bindings, 36
osi_close_database, 35
osi_close_path_watcher, 33
osi_close_port, 29
osi_close_SHA1, 38
osi_close_tcp_listener, 34
osi_connect_tcp, 33
osi_exit, 29
osi_finalize_statement, 36
osi_get_argv, 26
osi_get_bindings, 37
osi_get_bytes_used, 26
osi_get_callbacks, 26
osi_get_error_text, 27
osi_get_executable_path, 31
osi_get_file_size, 31
osi_get_free_memory, 26
osi_get_home_directory, 31
osi_get_hostname, 27
osi_get_hrtime, 27
osi_get_ip_address, 34
osi_get_last_insert_rowid, 36
osi_get_pid, 29
osi_get_real_path, 31
osi_get_SHA1, 38
osi_get_sqlite_status, 37
osi_get_stat, 32

168

osi_get_statement_columns, 36
osi_get_statement_expanded_sql, 37
osi_get_tcp_listener_port, 34
osi_get_temp_directory, 31
osi_get_time, 27
osi_get_total_memory, 26
osi_get_uname, 27
osi_hash_data, 38
osi_init, 23
osi_interrupt_database, 37
osi_is_quantum_over, 27
osi_is_service, 26
osi_kill, 30
osi_list_directory, 32
osi_list_uv_handles, 27
osi_listen_tcp, 34
osi_make_directory, 31
osi_make_error_pair, 24
osi_make_uuid, 27
osi_marshal_bindings, 37
osi_open_database, 35
osi_open_fd, 30
osi_open_file, 30
osi_open_SHA1, 38
osi_prepare_statement, 36
osi_read_port, 28
osi_remove_directory, 32
osi_rename, 32
osi_reset_statement, 37
osi_send_request, 24
osi_set_argv, 28
osi_set_quantum, 28
osi_spawn, 29
osi_spawn_detached, 29
osi_start_signal, 30
osi_step_statement, 37
osi_stop_signal, 30
osi_string_to_utf8, 24
osi_tcp_nodelay, 35
osi_unlink, 33
osi_unmarshal_bindings, 38
osi_watch_path, 33
osi_write_port, 29
oxford-comma, 74

parallel, 160
parallel!, 161
parallel:execute, 161

parallel:execute!, 161
parallel:for-each, 161
parallel:map, 161
parallel:options, 160
parallel:vector-map, 161
parse-command-line-arguments, 157
parse-sql, 122
path watcher, 66
path watcher, 40, 43, 59, 66, 67, 70
path-combine, 66
path-watcher, 40
path-watcher guardian, 43, 70
path-watcher-count, 66
path-watcher-create-time, 66
path-watcher-path, 66
path-watcher?, 67
pcb, 40
port->notify-port, 67
pps, 50
pregexp, 81
pregexp-match, 81
pregexp-match-positions, 81
pregexp-quote, 82
pregexp-replace, 81
pregexp-replace*, 82
pregexp-split, 81
pretty-syntax-violation, 78
print-bindings, 124
print-databases, 123
print-digests, 77
print-foreign-handles, 53
print-osi-ports, 67
print-path-watchers, 67
print-process-state, 54
print-signal-handlers, 67
print-statements, 124
print-tcp-listeners, 67
procedure/arity?, 53
process-id, 50
process-name, 50
process-parent, 50
process-trap-exit, 50
process?, 50
profile-me, 57
profile-me-as, 57
provide-shared-object, 17
ps-fold-left, 54

169

q, 39
queue:add, 71
queue:add-front, 71
queue:drop, 71
queue:empty, 71
queue:empty?, 71
queue:get, 71

raise-on-exit, 51
re, 81
read-bytevector, 67
read-file, 67
read-osi-port, 68
receive, 48
register, 43
registrar, 41
regular-file?, 68
remove-directory, 68
remove-file, 68
rename-path, 68
repl-level, 16
require-shared-object, 17
run queue, 42, 50
run-mat, 20
run-mats, 20
run-mats-to-file, 20

scale-timeout, 19
scheduler, 41
self, 51
send, 49
service, 12
set-file-mode, 68
signal handlers, 67
signal-handler, 68
signal-handler-count, 69
sleep queue, 42
software-info, 14
software-product-name, 14
software-revision, 14
software-version, 14
spawn, 43
spawn-os-process, 69
spawn-os-process-detached, 69
spawn&link, 43
split, 74
split-n, 74
sqlite:bind, 124

sqlite:bulk-execute, 125
sqlite:clear-bindings, 125
sqlite:close, 125
sqlite:columns, 125
sqlite:execute, 125
sqlite:expanded-sql, 125
sqlite:finalize, 125
sqlite:get-bindings, 125
sqlite:interrupt, 126
sqlite:last-insert-rowid, 126
sqlite:marshal-bindings, 126
sqlite:open, 126
sqlite:prepare, 126
sqlite:sql, 126
sqlite:step, 126
sqlite:unmarshal-bindings, 127
stack->json, 132
starts-with-ci?, 74
starts-with?, 74
stat-directory?, 70
stat-regular-file?, 70
statement guardian, 126
statement-count, 124
statement-create-time, 123
statement-database, 124
statement-sql, 124
statement?, 123
statistics:resume, 134
statistics:start&link, 134
statistics:suspend, 134
string->uuid, 28
summarize, 21
supervisor

handle-call, 108
handle-cast, 100, 108
handle-info, 109
init, 107
state, 107
terminate, 107

supervisor:delete-child, 111
supervisor:get-children, 111
supervisor:restart-child, 111
supervisor:start-child, 111
supervisor:start&link, 110
supervisor:terminate-child, 111
supervisor:validate-start-specs, 110
swish-event-logger, 131
swish-exit-reason->english, 72

170

swish-start, 15
swish_run, 24
swish_service, 25
symbol-append, 75

TCP listener, 43, 63
TCP listener, 41, 60, 62, 63, 67, 70
tcp-listener-count, 70
tcp-nodelay, 70
terminate, 97
throw, 44
TIMEOUT_SCALE_FACTOR, 19
tmp-dir, 13
transaction, 121
trim-whitespace, 74
try, 44
tuple, 57

copy, 58
copy*, 58
define-tuple, 57
field accessor, 58
is?, 59
make, 58
open, 58

unlink, 46
unregister, 44

URL handler, 137
uuid->string, 28

wait-for-io, 57
walk-stack, 55
walk-stack-max-depth, 55
watch-path, 70
watcher:shutdown-children, 113
watcher:start-child, 112
watcher:start&link, 112
whereis, 44
windows?, 57
with-db, 120
with-gatekeeper-mutex, 105
with-interrupts-disabled-for-io, 51
with-process-details, 54
with-sfd-source-offset, 70
with-temporaries, 78
wrap-text, 74
write-osi-port, 70
ws:close, 146
ws:connect, 146
ws:options, 146
ws:send, 146
ws:send!, 146
ws:upgrade, 146

171

	Introduction to Swish
	Overview
	Supervision Tree

	Developing Software with Swish
	Introduction
	Deployment Types
	Scripts
	Linked Programs
	Stand-alone Programs
	Services

	Running Tests
	Programming Interface
	Configuration
	Program Life Cycle
	Foreign Interface
	Testing

	Operating System Interface
	Introduction
	Theory of Operation
	Programming Interface
	C Interface
	System Functions and Procedures
	Port Functions
	Process Functions
	File System Functions
	TCP/IP Functions
	SQLite Functions
	Message-Digest Functions

	Erlang Embedding
	Introduction
	Data Structures
	Theory of Operation
	Programming Interface
	Process Creation
	Process Registration
	Process Termination, Links, and Monitors
	Messages and Pattern Matching
	Process Properties
	Miscellaneous
	Tuples
	I/O
	Queues
	Hash Tables
	Error Strings
	String Utilities
	Message Digests
	Data-Encoding Utilities
	Macro Utilities

	Regular Expressions
	Introduction
	Programming Interface
	The Regexp Pattern Language
	Basic Assertions
	Characters and Character Classes
	Quantifiers
	Clusters
	Alternation
	Backtracking
	Looking Ahead and Behind

	Generic Server
	Introduction
	Theory of Operation
	Programming Interface
	Published Events
	Callback Interface

	Event Manager
	Introduction
	Theory of Operation
	Programming Interface

	Gatekeeper
	Introduction
	Theory of Operation
	Programming Interface

	Supervisor
	Introduction
	Theory of Operation
	Design Decisions
	Programming Interface
	Published Events
	Watcher Interface

	Application
	Introduction
	Theory of Operation
	Programming Interface

	Database Interface
	Introduction
	Theory of Operation
	Design Decisions
	Programming Interface

	Log Database
	Introduction
	Theory of Operation
	Initialization
	Extensions

	Programming Interface
	Published Events

	System Statistics
	Introduction
	Theory of Operation
	Programming Interface
	Published Events

	HTTP Interface
	Introduction
	Theory of Operation
	URL handler and Media Type handler
	Default file handling
	Dynamic Pages
	WebSocket Protocol

	Security
	Programming Interface
	Dynamic Page Constructs
	WebSocket Protocol
	HyperText Markup Language
	JavaScript Object Notation

	Published Events

	Command Line Interface
	Introduction
	Theory of Operation
	Programming Interface

	Parallel
	Introduction
	Theory of Operation
	Programming Interface

	Bibliography
	List of Figures
	Index

